
Intel®

JPEG Library
Developer’s Guide

Copyright © 1998-2000, Intel Corporation
All Rights Reserved
Issued in U.S.A.
Document number 726916-004

How to Use This Online Manual

Printing an Online File. Select Print from the File menu to print an online file. The dialog that opens
allows you to print full text, range of pages, or selection.
Viewing Multiple Online Manuals. Select Open from the File menu, and open a .PDF file you need.
Select Cascade from the Window menu to view multiple files.
Resizing the Bookmark Area. Drag the double-headed arrow that appears on the area’s border as
you pass over it.
Jumping to Topics. Throughout the text of this manual, you can jump to different topics by clicking on
keywords printed in blue color, underlined style or on page numbers in a box.

To return to the page from which you jumped, use the icon in the tool bar. Try this example:

This software is briefly described in the Overview; see page 1-1.

If you click on the phrase printed in blue color, underlined style, or on the page number, the Overview

opens.

Click to hide or show subtopics when the
bookmarks are shown.

Click to go to the previous page.

Double-click to jump to a topic when the
bookmarks are shown.

Click to go to the next page.

Click to display bookmarks. Click to go to the last page.

Click to display thumbnails. Click to return back to the previous view.
Use this button when you need to go back
after using the jump button (see below).

Click to close bookmark or thumbnail
view.

Click to go forward from the previous
view.

Click and use on the page to drag the
page in vertical direction.

Click to set 100% of the page view.

Click and drag to the page to magnify the
view.

Click to display the entire page within the
window.

Click and drag to the page to reduce the
view.

Click to fill the width of the window.

Click and drag the selection cursor to the
page.

Click to open a dialog to search for a word
or multiple words.

Click to go to the first page of the manual. Click jump button on manual pages to
jump to the related subjects. Use the
return back icon above to go back.

Intel® JPEG Library
Developer's Guide
Document number: 726916-004

World Wide Web: http://developer.intel.com

Revision Revisio n History Date

-001 First release. 09/98

-002 Added the functions ijlGetLibVersion and ijlErrorStr 01/99

-003 Added new code examples 07/99

-004 Documents the Intel® JPEG Library version 1.5 07/00

http://developer.intel.com/vtune/perflibst

This manual as well as the software described in it is furnished under license and may only be used or
copied in accordance with the terms of the license. The information in this manual is furnished for
informational use only, is subject to change without notice, and should not be construed as a commitment by
Intel Corporation.

Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by
such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means without the express written consent of Intel Corporation.

Information in this document is provided in connection with Intel® products. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided
in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent,
copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or
life sustaining applications. Intel may make changes to specifications and product descriptions at any time,
without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved"
or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them.

Processors may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Intel, the Intel logo, and Pentium are registered trademarks, and MMX is a trademark of Intel Corporation.

*Third-party marks and brands are the property of their respective owners.

Copyright 1998 - 2000, Intel Corporation. All Rights Reserved.

iii

Contents

Chapte r 1 Overview
Nature of Product... 1-1
Minimum Requirements ... 1-2
What’s New in IJL .. 1-2
Technical Support and Feedback....................................... 1-3

Chapte r 2 Programmin g Considerations
Dynamic Link Library ... 2-1
Import Library... 2-1
Header File .. 2-1
Steps for Creating an IJL Application 2-1

Chapte r 3 Architectur e Description
Supported I/O Data Structures ... 3-1
Supported Data Formats.. 3-3
JPEG Properties Data Storage .. 3-3
Multi-Threading Support... 3-5

Chapte r 4 Interfac e Specifications

Chapte r 5 Insid e the Library
Initialization .. 5-1
Clean-up .. 5-1
Reading Data... 5-2
Writing Data ... 5-5
Opening a JPEG Image ... 5-7
Creating a JPEG Image ... 5-15
Interrupted Encoding and Decoding................................... 5-17
Rectangle-of-Interest Decoding.. 5-35
Scaled Decoding.. 5-40
Embedded Thumbnail Decoding .. 5-44

Intel® JPEG Library Developer’s Guide

iv

Progressive Image Support.. 5-45
Accessing JPEG Images From a Buffer 5-48
Odd Data Formats.. 5-54

Chapter 6 Pre- and Post-Processing
DIBs... 6-1
IJL Color Spaces.. 6-2
Subsampling .. 6-4
Upsampling .. 6-5
Decoding and Post-Processing Matrix................................ 6-6
Encoding and Pre-Processing Matrix 6-10

Chapter 7 Advanced IJL Features
Use of Processor-Specific Code ……………………………..7-1
Setting the DCT Algorithm.. 7-1
Writing and Reading of JPEG Comment Block................... 7-2
Custom JPEG Tables... 7-2
Custom Quantization Tables .. 7-3
Custom Huffman Tables... 7-7
Extended Baseline Decoding ... 7-12

Appendix A Glossary of Terms

Appendix B Data Structure and Type Definitions
JPEG_CORE_PROPERTIES... B-1
Supporting Type Definitions ... B-4
Return Error Codes .. B-8
IJLibVersion Structure.. B-10

Appendix C Frequently Asked Questions

Figures
3-1 Top-Level Architecture of the Intel JPEG Library 3-2
3-2 The Intel JPEG Library Main Data Structure.............. 3-4
4-1 The Intel JPEG Library Application Programming

Interface ... 4-1

Overview

v

6-1 Windows 24-bit DIB Data Format 6-1

Tables
5-1 Scaled Decoding Calculations................................... 5-40
6-1 IJL Supported Color Spaces 6-2
6-2 IJL Decoding and Post-Processing Matrix 6-6
6-3 IJL Encoding and Pre-Processing Matrix................... 6-10

Examples
Decoding a JPEG image from a JFIF file to a general
pixel buffer ... 5-7
Decoding a JPEG image from a JFIF file
to Windows DIB .. 5-11
Encoding a JFIF file from Windows DIB 5-15
Interrupted decoding ... 5-18
Decoding image row by row .. 5-21
Encoding image by one MCU at a time 5-27
Decoding a JPEG image from a JFIF file using
the Rectangle-Of-Interest (ROI) method 5-35
Decoding a JPEG image from a JFIF file using
the scaled decoding method .. 5-41.
Decoding an image from a JFIF buffer 5-49
Encoding Windows DIB to a JPEG buffer 5-52
Authoring a JPEG image using custom quantization tables 7-4
Authoring a JPEG image using custom Huffman tables 7-7

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Overview

1-1

1
This Developer’s Guide describes the design and implementation of the
Intel® JPEG Library (IJL). Please use this guide in conjunction with the
source code for the Sample Application and with the other IJL
documentation as a learning tool to familiarize yourself with the use of
the IJL.

This guide assumes that the reader has a working knowledge of the
software development process and the C/C++ programming language.
Some familiarity with digital imaging, software development for the
Microsoft* Windows* 95, 98 operating systems, and the Microsoft
Foundation Classes application framework may also be useful.

A note to the reader, the following appendices are located at the end of this
document for reference:Appendix A - Glossary of Terms, andAppendix B
- Data Structure and Type Definitions(which provides additional
information on IJL data structures, type definitions, and error codes).

Nature of Product

The IJL is a software library for application developers that provides high
performance JPEG encoding and decoding of full color, and grayscale,
continuous-tone still images.

The IJL was designed for use on Intel® processors-based systems and has
been tuned for high performance and efficient memory usage.
Additionally, the IJL was developed to take advantage of MMX™

technology if present.

Intel® JPEG Library Developer’s Guide

1-2

1
The IJL provides an easy-to-use programming interface without sacrificing
low-level JPEG control to advanced developers. The IJL also includes a
substantial amount of functionality that is not included in the ISO JPEG
standard. This added functionality is typically necessary when working
with JPEG images, and includes pre-processing and post-processing
options like sampling and color space conversions.

Minimu m Requirements
• The IJL requires the presence of the Microsoft Windows 95, 98 or

WindowsNT* operating system, and uses the Win32* application
programming interface (API).

• The IJL was designed to run on at least an Intel® Pentium® processor.
• A 32-bit compiler is required to create a 32-bit IJL application.
• Since the IJL is a Dynamic Link Library (DLL), the programming

language used must be able to produce an application capable of
calling functions contained within a Win32 DLL.

What’ s New in IJL

The IJL version 1.5 supports the following new features:

• Encoding of progressive JPEG images.
• New DCT algorithm of higher accuracy, derived from

Intel® Integrated Performance Primitives for Intel® architecture.
• New sampling algorithm with triangular filter,

IJL_TRIANGLE_FILTER , which gives better quality results.
• New input data format for encoding and output format for decoding,

which is 4:2:2 subsampled pixel-interleaved IJL_YCBC R format with
data sequence set as a Y0-Cb0-Y1-Cr0-Y2-Cb1-Y3-Cr1-... .

• Support of new instructions for Pentium III processor (implemented
mainly in forward and inverse DCT functions, and some color
conversion functions).

• Writing and reading of JPEG segment that contains comments.

Overview

1-3

Technica l Suppor t and Feedback

Your feedback on the IJL is very important to us. We wil l strive to provide
you with answers or solutions to any problems you might encounter. To
give your feedback, or to report any problems with installation or use,
please contact one of the following:

• Support Hotlines:
North American Hotline: 800-628-8686
International Hotline: 916-356-7599

• Send e-mail to developer_support@intel.com

mailto:developer_support@intel.com

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Programming Considerations

2-1

2
There are three components necessary for creating an IJL application:
1. The IJL dynamic link library (IJL15.DLL),
2. The IJL import library (IJL15.LIB), and
3. The IJL header fil e (IJL.H).

Dynami c Link Library

The dynamic link library (DLL) contains the IJL functions called by your
application during execution. Digits after the name indicate thecurrent
library version.

Impor t Libr ary

The import library is linked to your application at compilation time and
relates the IJL function calls to actual entry points in the DLL.

Header File

The header fil e contains the IJL function declarations and provides data
structure definitions, data type definitions, and error codes.

Steps for Creatin g an IJL Application
1. Write your program with the IJL function calls. Use the IJL functions

just as if they were defined in your program.
2. Include the IJL header file, IJL.H , in each source module that calls an

IJL function.

Intel® JPEG Library Developer’s Guide

2-2

2
3. Add the IJL import library, IJL15.LIB , to your project’s list of link

libraries.
4. Compile and link your application as you would normally do to create

a Win32 application.

Architecture Description

3-1

3
The current JPEG standard (ISO DIS 10918-1) has 44 possible JPEG
image compression techniques, many of which are application-specific and
not used by the majority of the JPEG decoders. Similarly, the IJL supports
only a subset of the possible compression techniques.

Today, the most commonly used JPEG modes are the sequential DCT-
based Baseline and Extended Baseline modes. Both of these are fully
supported in the IJL for JPEG encoding and decoding. The IJL version 1.5
supports also Progressive modes for JPEG encoding and decoding. There is
currently no provision for restart intervals in Progressive encoding mode.

Supporte d I/O Data Structures

The IJL architecture (see Figure 3-1) performs basic input from, and output
to, these data structures:

1. A general pixel buffer in memory.
2. A standard I/O fil e that contains a JPEG bit stream.
3. A memory buffer that contains a JPEG bit stream.

Intel® JPEG Library Developer’s Guide

3-2

3
Figure 3-1 Top-Level Architecture of the Intel ® JPEG Library

IJL

JPEG Properties

JFIF File
(.jpg)

JFIF
Buffer

User SW

Read JPEG

Pixel
Buffer

Write JPEG

Architecture Description

3-3

3
Supported Data Formats

Additionally, the IJL supports the following data formats:

• Top-down or bottom-up pixel buffers.
• Pixel buffers with user-defined end-of-line padding.
• Access to a rectangle-of-interest within a general pixel buffer.
• Decoding from a rectangle-of-interest within a larger JPEG image.
• JPEG File Interchange Format (JFIF) encoding and decoding.

IJL provides decoding of JFIF files compliant with JFIF
specification versions 1.01 and 1.02. Encoding is done as per JFIF
version 1.01. IJL also supports decoding of embedded uncompressed
thumbnails stored using 1 or 3 bytes/pixel as compliant with JFIF
specification versions 1.01 and 1.02. Thumbnails compressed using
JPEG are not supported at this time.

Data (sample) values must be 8-bits precision per color channel.

JPEG Properties Data Storage

The IJL’s “JPEG Properties” data storage contains global and image-
specific JPEG information. Control structures within this storage
determine I/O specific processing options, such as subsampling and color
conversion requirements.
The IJL uses theJPEG_CORE_PROPERTIESdata structure for storing the
JPEG properties data. This structure can be described as having two
separate parts. The first part consists of a set of fields encapsulating
common library parameters, and the other part consists of a low-level
embedded structure (seeFigure 3-2and/orAppendix B - Data Structure
and Type Definitions).

Users must follow two main rules aboutJPEG_CORE_PROPERTIES:

1. The user must always provide (allocate) theJPEG_CORE_PROPERTIES

data structure.
2. The sameJPEG_CORE_PROPERTIESdata structure may be reused for a

series of JPEG encodings and/or decodings when initialized and
cleaned up properly.

Intel® JPEG Library Developer’s Guide

3-4

3
Figure 3-2 The Intel ® JPEG Library Main Data Structure

JPEG_CORE_PROPERTIES

I/O Fields

JPEG_PROPERTIES

Low-Level I/O Fields

Other Low-Level Fields
(FRAME, SCAN, and

COMPONENT structures)

Huffman Tables

Quantization Tables

Temp Storage

JPEG_PROPERTIESis the low-level data structure and it contains a copy of
each of the fields found inside of theJPEG_CORE_PROPERTIEShigh-level
data structure plus some additional fields. The IJL usesJPEG_PROPERTIES

Architecture Description

3-5

3
internally, notJPEG_CORE_PROPERTIES, so this structure isolates the
internal variables from the external.

For advanced users, theJPEG_PROPERTIESdata structure may be used for
extended interface behavior. For example, the user may want to write user-
defined Huffman tables and/or quantization tables directly to
JPEG_PROPERTIESto override the default tables (seeChapter 7, Advanced
IJL Featuresfor more information).

Default values for the fields in both theJPEG_CORE_PROPERTIESand
JPEG_PROPERTIESdata structures are fully documented as in-line
comments inside of the header fileIJL.H .

Multi-Threading Support

TheJPEG_CORE_PROPERTIESdata structure was designed to be local to a
single thread. There is no parameter “locking” that will allow multiple
threads to access the sameJPEG_CORE_PROPERTIESstructure. However,
all implementation details of the IJL allow multiple
JPEG_CORE_PROPERTIESstorages and code access by multiple threads.

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Interface Specifications

4-1

4
The IJL provides a simple C function interface (seeFigure 4-1).
It was modeled on a simple read/write stack built around the
JPEG_CORE_PROPERTIESdata structure.

There are functions to initialize and release the storage used inside of
JPEG_CORE_PROPERTIES. Also provided are functions designed to
transact data and/or parameters to, or from, the IJL.

IJL function calls return a descriptive error code upon a failure; otherwise,
a positive success code (IJL_OK , IJL_INTERRUPT_OK, IJL_ROI_OK) is
returned. SeeAppendix B - Data Structure and Type Definitionsfor further
details. To convert an error code to a string with the textual description of
the error, use the functionijlErrorStr() .

Finally, the functionijlGetLibVersion() returns the version number
and other information about the library.
Note that both theijlErrorStr() andijlGetLibVersion() functions
return a pointer to a static variable, so the application has no need to free
the memory referenced by these pointers.

Figure 4-1 The Intel ® JPEG Library Application Programming Interface

// Initialize the IJL.
IJLERR ijlInit (JPEG_CORE_PROPERTIES *jcprops);

// Clean up the IJL.
IJLERR ijlFree (JPEG_CORE_PROPERTIES *jcprops) ;

// Use the IJL to read data from a buffer or a file.
IJLERR ijlRead (JPEG_CORE_PROPERTIES *jcprops, IJLIOTYPE
iotype) ;

continued

Intel® JPEG Library Developer’s Guide

4-2

4
Figure 4-1 The Intel JPEG Library Application Programming Interface

(continued)

// Use the IJL to write data into a buffer or a file.
IJLERR ijlWrite (JPEG_CORE_PROPERTIES *jcprops, IJLIOTYPE
iotype) ;

// Return the version number of the IJL.
const IJLibVersion* ijlGetLibVersion() ;

// Return a pointer to a string with error description.
const char* ijlErrorStr(IJLERR code) ;

Inside the Library

5-1

5
This section describes the design and implementation of common features
of the IJL, as well as providing some working examples.

Initialization

The IJL must be initialized before it can be used by an application. This
occurs in theijlInit() function. This function should only be called
once per each allocation of aJPEG_CORE_PROPERTIESdata structure.

In the event that an application wants to make multiple calls to either the
encode or decode functions, the application should include a call to
ijlInit() before either of the functions is invoked, and more precisely
the initialization needs to take place between each individual call to the
encode or decode functions. This allows theJPEG_CORE_PROPERTIESdata
structure to reset. Additionally, there must be a one-to-one correlation
between each initialization call and its counterpartijlFree() the
cleanup function.

Clean-up

After an application has finished using the IJL, the memory and other
system resources allocated by the IJL should be released by calling the
ijlFree() function.

In the case of multiple encoding or decoding calls, as reviewed in the
previous section, theijlFree() function should be called after the
encode or decode function has been completed. This behavior will insure
that resources will be properly cleaned up, and any values used by the IJL
will not be corrupted.

Intel® JPEG Library Developer’s Guide

5-2

5
Reading Data

ijlRead (JPEG_CORE_PROPERTIES *jcprops, IJLIOTYPE iotype) is
one of two interface functions that access JPEG compressed data (the other
is ijlWrite() which is discussed in the following section).

The second parameter indicates the JPEG data location (i.e., a file or a
buffer), the “mode of access”, and any scaling to be applied during the
decode process. The following twoIJLIOTYPE naming conventions are
used:

1. IJL_JBUFF_XXXX

(Indicating the JPEG data is stored in a memory buffer).
2. IJL_JFILE_XXXX

(Indicating the JPEG data is located in a standard I/O file).

When reading data, the mode of access must beREADPARAMS, READHEADER,
READENTROPY, READWHOLEIMAGE, READONEHALF, READONEQUARTER,
READONEEIGHTH, or READTHUMBNAIL. Each of these is described in the
tables below.

IJLIOTYPE Description

IJL_JXXXX_READPARAMS Indicates that JPEG parameters (i.e., height,
width, number of channels, subsampling) are
to be determined from the JPEG bit stream.

For example, the following markers are
parsed:
SOI | [tables/misc] like APPn and DQT |
SOF | [tables/misc] like DHT | stops at SOS

Note: bit stream must start with SOI marker.

continued

Inside the Library

5-3

5
IJLIOTYPE Description

IJL_JXXXX_READHEADER Indicates the Abbreviated Format for table
specification data (i.e., Huffman tables,
quantization tables, miscellaneous marker
segments) is to be read.

For example, the following markers are
parsed:
SOI | [tables/misc] | EOI (or stops at SOF or
SOS)

Note: bit stream must start with SOI marker.

IJL_JXXXX_READENTROPY Indicates the Abbreviated Format for
compressed image data is to be read.
Identical to READWHOLEIMAGE except
that the bit stream may or may not contain
table specification data.

For example, the following markers are
parsed:
SOI | [tables/misc] | SOF [tables/misc] like
DHT | SOS | EOI

Note: in this case only (READENTROPY),
APP0 segments are skipped over.

IJL_JXXXX_READWHOLEIMAGE Indicates the Interchange Format for
compressed image data (i.e., the whole
JPEG bit stream) is to be read.

For example, the following markers are
parsed:
SOI | [tables/misc] like APPn and DQT |
SOF [tables/misc] like DHT | SOS | EOI

Typically, READPARAMSis used to determine the JPEG’s height and width
in order to allocate an output buffer or for viewing reasons. Then, to read
the remaining image data,READWHOLEIMAGEor READENTROPYis used.

Intel® JPEG Library Developer’s Guide

5-4

5
READHEADERis commonly called to parse the Abbreviated Format for table
specification data. It is subsequently paired withREADENTROPYto obtain
the Abbreviated Format for compressed image data. The
READHEADER/READENTROPYpair is an optimal solution to Abbreviated
Format JPEG decoding (i.e., for FlashPix* compressed images).

The IJLIOTYPE may also be used to indicate a scaled read (seeScaled
Decodingfor more information). TheIJLIOTYPE enums for a scaled read
have the same behavior, and may be used in the same way, as a
READWHOLEIMAGEor READENTROPY. The following scaled decoding
IJLIOTYPE ’s are defined:

IJLIOTYPE Description

IJL_JXXXX_READONEHALF Decodes the image scaled to ½ size.

For example, the following markers are
parsed:
(See READENTROPY).

IJL_JXXXX_READONEQUARTER Decodes the image scaled to ¼ size.

For example, the following markers are
parsed:
(See READENTROPY).

IJL_JXXXX_READONEEIGHTH Decodes the image scaled to 1/8 size.

For example, the following markers are
parsed:
(See READENTROPY).

Inside the Library

5-5

5
Lastly, the IJLIOTYP E may be used to indicate an attempt to decode an
embedded thumbnail (if present) in a JFIF bit stream (see Embedded
Thumbnail Decoding for more information). IJL_JXXXX_READTHUMBNAIL

may be used in the same way as IJL_JXXXX_READPARAMS.

IJLIOTYPE Description

IJL_JXXXX_READTHUMBNAIL Attempts to decode an embedded
thumbnail (if present) in a JFIF bit stream.

For example, the following markers are
parsed:
(See READPARAMS).

When decoding a JPEG bit stream the following markers, and their
corresponding segments if applicable, are not processed by the IJL (i.e.,
they are skipped over): APPn (except APP0 and APP14), DAC,
DHP, DNL, EXP, JPGn, RES, SOFn (except SOF0, SOF1, and SOF2), and
TEM. Any SOFn markers (except SOF0, SOF1, and SOF2) wil l cause the
IJL_UNSUPPORTED_FRAME error.

Wri ting Data

ijlWrite (JPEG_CORE_PROPERTIES * , ILIOTYP E iotype) is the
interface for writing data to a JPEG bit stream.

Similar to ijlRead () , the second parameter indicates the JPEG data
location (i.e., a fil e or a buffer) and the “mode of access”. However, unlike
ijlRead () , the IJLIOTYP E parameter cannot be used to indicate scaled
writing or to author embedded JFIF thumbnails. The following two
IJLIOTYP E naming conventions are used:

1. IJL_JBUFF_XXXX

(Indicating the JPEG compressed data is stored in a memory buffer).
2. IJL_JFILE_XXXX

(Indicating the JPEG data is located in a standard I/O file).

Intel® JPEG Library Developer’s Guide

5-6

5
When writing data, the mode of access must beWRITEHEADER,
WRITEENTROPY, or WRITEWHOLEIMAGE. Each is described in the following
table:

IJLIOTYPE Description

IJL_JXXXX_WRITEHEADER Indicates an Abbreviated Format for
table specification data bit stream (i.e.,
Huffman tables, quantization tables,
miscellaneous marker segments) is to
be written.
The following markers are authored:
SOI | tables DQT and DHT | EOI

IJL_JXXXX_WRITEENTROPY Indicates an Abbreviated Format for
compressed image data bit stream is
to be written. Identical to
WRITEWHOLEIMAGE except that the
bit stream may or may not contain
table specification data.
The following markers are authored:
SOI | SOF | [DRI] | SOS | EOI

IJL_JXXXX_WRITEWHOLEIMAGE Indicates a JPEG File Interchange
Format (JFIF) for compressed image
data bit stream is to be written (i.e., an
entire JPEG using JFIF).
The following markers are authored:
SOI | tables/misc APP0, DQT, and
DHT | SOF | [DRI] | SOS | EOI

WRITEHEADERis typically called to write a bit stream in the Abbreviated
Format for table specification data. Also, it is usually paired with
WRITEENTROPY, which is designed to write a bit stream in the Abbreviated
Format for compressed image data. TheWRITEHEADER/WRITEENTROPY

pair is an optimal solution to Abbreviated Format JPEG encoding (i.e., for
FlashPix compressed images).
When encoding data, the IJL writes the COM marker segment.
If the user comment is not specified, the default comment string
“Intel® JPEG Library, [<version>]” will be written.

Inside the Library

5-7

5
Opening a JPEG Image

Algorithm for “Normal Decoding of a JPEG Image”:
1. Allocate aJPEG_CORE_PROPERTIESdata structure.
2. Initialize the IJL.
3. Get the JPEG image dimensions, etc.
4. Set up display parameters and allocate output storage.
5. Get the JPEG image data.
6. Close down the IJL.

In the following code segment, the IJL is used to decode a JPEG image
from a JFIF file. Please refer toAppendix B - Data Structure and Type
Definitionsfor additional details on IJL data structure definitions and
default values, data type definitions, and error codes.

//--
// An example using the IntelR JPEG Library:
// -- Decode a JPEG image from a JFIF file to general pixel buffer.
//--

BOOL DecodeJPGFileToGeneralBuffer(
LPCSTR lpszPathName,
DWORD* width,
DWORD* height,
DWORD* nchannels,
BYTE** buffer)

{
BOOL bres;
IJLERR jerr;
DWORD x = 0; // pixels in scan line
DWORD y = 0; // number of scan lines
DWORD c = 0; // number of channels
DWORD wholeimagesize;
BYTE* pixel_buf = NULL;

// Allocate the IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIESjcprops;

bres = TRUE;

Intel® JPEG Library Developer’s Guide

5-8

5
__try
{

// Initialize the IntelR JPEG Library.
jerr = ijlInit (&jcprops);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

// Get information on the JPEG image
// (i.e., width, height, and channels).
jcprops.JPGFile = const_cast<LPSTR>(lpszPathName);

jerr = ijlRead (&jcprops, IJL_JFILE_READPARAMS);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

// Set up local data.
x = jcprops.JPGWidth;
y = jcprops.JPGHeight;
c = 3; // Decode int o a 3 channel pixel buffer.

// Compute size of desired pixel buffer.
wholeimagesize = (x * y * c);

// Allocate memory to hold the decompressed image data.
pixel_buf = new BYTE [wholeimagesize];
if(NULL == pixel_buf)
{

bres = FALSE;
__leave;

}

// Set up the info on the desired DIB properties.
jcprops.DIBWidth = x;
jcprops.DIBHeight = y; // Implies a bottom-up DIB.
jcprops.DIBChannels = c;
jcprops.DIBColor = IJL_BGR;

Inside the Library

5-9

5
jcprops.DIBPadBytes = 0;
jcprops.DIBBytes = pixel_buf;

// Set the JPG color space ... this will always be
// somewhat of an educated guess at best because JPEG
// is "color blind" (i.e., nothing in the bit stream
// tells you what color space the data was encoded from).
// However, in this example we assume that we are
// reading JFIF files which means that 3 channel images
// are in the YCbCr color space and 1 channel images are
// in the Y color space.
switch(jcprops.JPGChannels)
{

case 1:
{

jcprops.JPGColor = IJL_G;
break;

}

case 3:
{

jcprops.JPGColor = IJL_YCBCR;
break;

}

default:
{

// This catches everything else, but no
// color twist will be performed by the IJL.
jcprops.DIBColor = (IJL_COLOR)IJL_OTHER;
jcprops.JPGColor = (IJL_COLOR)IJL_OTHER;
break;

}
}

// Now get the actual JPEG image data into the pixel buffer.
jerr = ijlRead (&jcprops, IJL_JFILE_READWHOLEIMAGE);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

Intel® JPEG Library Developer’s Guide

5-10

5
} // __try
__finally
{

if(FALSE == bres)
{

if(NULL != pixel_buf)
{

delete [] pixel_buf;
pixel_buf = NULL;

}
}

// Clean up the IntelR JPEG Library.
ijlFree (&jcprops);

*width = x;
*height = y;
*nchannels = c;
*buffer = pixel_buf;

} // __finally

return bres;
} // DecodeJPGFileToGeneralBuffer()

Note that the code segment above decodes a JPEG image into a “general
pixel buffer” and thus no special allocation or alignment of the buffer is
required. As previously mentioned inChapter 3, Architecture Description,
the IJL was designed to work with a general pixel buffer, and the user is
responsible for the allocation of the buffer to hold the pixel data. The IJL
in turn can write into, or read from, the buffer. The address of the buffer
gets passed to the IJL through theDIBBytes field in the
JPEG_CORE_PROPERTIESstructure.

In the case that a user wants to decode into a Windows* DIB, the buffer
size calculation above could possibly return an incorrect size. If a user
wants to ensure the four (4) byte alignment of the buffer, as per the
definition of a Windows DIB, he should use theIJL_DIB_PAD_BYTES

macro included in theijl.h header file. This macro definition is given by

#define IJL_DIB_PAD_BYTES(width,nchannels) \

Inside the Library

5-11

5
(((width * nchannels) + (sizeof(DWORD) - 1)) & (

~(sizeof(DWORD) - 1)) - (width * nchannels))

The correspondingDIBPadBytes value can be easily calculated as

jcprops.DIBPadBytes = IJL_DIB_PAD_BYTES(width,nchannels)

wherewidth is the image width in pixels, andnchannelsis the number of
channels. The following code segment illustrates how to decode a JPEG
image to a Windows DIB.

//--
// An example using the IntelR JPEG Library:
// -- Decode a JPEG image from a JFIF file to Windows DIB.
//--

BOOL DecodeJPGFileToDIB(
LPCSTR lpszPathName,
BITMAPINFOHEADER** dib)

{
BOOL bres;
IJLERR jerr;
DWORD width;
DWORD height;
DWORD nchannels;
DWORD dib_line_width;
DWORD dib_pad_bytes;
DWORD wholeimagesize;
BYTE* buffer = NULL;
BITMAPINFOHEADER* bmih = NULL;

// Allocate the IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIESjcprops;

bres = TRUE;

__try
{

// Initialize the IntelR JPEG Library.
jerr = ijlInit (&jcprops);
if(IJL_OK != jerr)

Intel® JPEG Library Developer’s Guide

5-12

5
{

bres = FALSE;
__leave;

}

// Get information on the JPEG image
// (i.e., width, height, and channels).
jcprops.JPGFile = const_cast<LPSTR>(lpszPathName);

jerr = ijlRead (&jcprops,IJL_JFILE_READPARAMS);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

// Set up local data.
width = jcprops.JPGWidth;
height = jcprops.JPGHeight;
nchannels = 3; // Decode int o a 3 channel pixel buffer.

// Compute DIB padding
dib_line_width = width * nchannels;
dib_pad_bytes = IJL_DIB_PAD_BYTES(width,nchannels);

// Compute size of desired pixel buffer.
wholeimagesiz e = (dib_line_width + dib_pad_byte s) * height;

// Allocate memory to hold the decompressed image data.
buffer = new BYTE [sizeof(BITMAPINFOHEADER) + wholeimagesize];
if(NULL == buffer)
{

bres = FALSE;
__leave;

}

bmih = reinterpret_cast<BITMAPINFOHEADER*>(buffer);

bmih->biSize = sizeof(BITMAPINFOHEADER);
bmih->biWidth = width;
bmih->biHeight = height;
bmih->biPlanes = 1;

Inside the Library

5-13

5
bmih->biBitCount = 24;
bmih->biCompression = BI_RGB;
bmih->biSizeImage = 0;
bmih->biXPelsPerMeter = 0;
bmih->biYPelsPerMeter = 0;
bmih->biClrUsed = 0;
bmih->biClrImportant = 0;

// Set up the info on the desired DIB properties.
jcprops.DIBWidth = width;
jcprops.DIBHeight = height; // Implies a bottom-up DIB.
jcprops.DIBChannels = nchannels;
jcprops.DIBColor = IJL_BGR;
jcprops.DIBPadBytes = dib_pad_bytes;
jcprops.DIBBytes = reinterpret_cast<BYTE*>(buffer +

sizeof(BITMAPINFOHEADER));

// Set the JPG color space ... this will always be
// somewhat of an educated guess at best because JPEG
// is "color blind" (i.e., nothing in the bit stream
// tells you what color space the data was encoded from).
// However, in this example we assume that we are
// reading JFIF files which means that 3 channel images
// are in the YCbCr color space and 1 channel images are
// in the Y color space.
switch(jcprops.JPGChannels)
{

case 1:
{

jcprops.JPGColor = IJL_G;
break;

}

case 3:
{

jcprops.JPGColor = IJL_YCBCR;
break;

}

default:

Intel® JPEG Library Developer’s Guide

5-14

5
{

// This catches everything else, but no
// color twist will be performed by the IJL.
jcprops.DIBColor = (IJL_COLOR)IJL_OTHER;
jcprops.JPGColor = (IJL_COLOR)IJL_OTHER;
break;

}
}

// Now get the actual JPEG image data into the pixel buffer.
jerr = ijlRead (&jcprops,IJL_JFILE_READWHOLEIMAGE);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

} // __try

__finally
{

if(FALSE == bres)
{

if(NULL != buffer)
{

delete [] buffer;
buffer = NULL;

}
}

// Clean up the IntelR JPEG Library.
ijlFree (&jcprops);

*dib = bmih;
} // __finally

return bres;
} // DecodeJPGFileToDIB()

Inside the Library

5-15

5
Creating a JPEG Image

Algorithm for “Normal Encoding of a JPEG Image”:

1. Initialize the IJL.
2. Set up encoding parameters (if different than the default values).
3. Write image data to the IJL.
4. Close the IJL.

The following code segment illustrates how to use the IJL to encode a JFIF
image from a pixel buffer. Please refer toAppendix B - Data Structure and
Type Definitionsfor additional details on IJL data structure definitions and
default values, data type definitions, and error codes.

//--
// An example using the IntelR JPEG Library:
// -- Encode a JFIF file from Windows DIB.
//--

BOOL EncodeJPGFileFromDIB(
LPCSTR lpszPathName,
BITMAPINFOHEADER* bmih)

{
BOOL bres;
IJLERR jerr;
DWORD dib_pad_bytes;

// Allocate the IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIESjcprops;

bres = TRUE;

__try
{

// Initialize the IntelR JPEG Library.
jerr = ijlInit (&jcprops);
if(IJL_OK != jerr)

Intel® JPEG Library Developer’s Guide

5-16

5
{

bres = FALSE;
__leave;

}

if(bmih->biBitCount != 24)
{

// not supported palette images
bres = FALSE;
__leave;

}

dib_pad_bytes = IJL_DIB_PAD_BYTES(bmih->biWidth,3);

// Set up information to write from the pixel buffer.
jcprops.DIBWidth = bmih->biWidth;
jcprops.DIBHeight = bmih->biHeight; // Implies a bottom-up DIB.
jcprops.DIBBytes = reinterpret_cast<BYTE*>(bmih) +

sizeof(BITMAPINFOHEADER);
jcprops.DIBPadBytes = dib_pad_bytes;
// Note: the following are default values and thus
// do not need to be set.
jcprops.DIBChannels = 3;
jcprops.DIBColor = IJL_BGR;

jcprops.JPGFile = const_cast<LPSTR>(lpszPathName);

// Specify JPEG file creation parameters.
jcprops.JPGWidth = bmih->biWidth;
jcprops.JPGHeight = bmih->biHeight;

// Note: the following are default values and thus
// do not need to be set.

jcprops.JPGChannels = 3;
jcprops.JPGColor = IJL_YCBCR;
jcprops.JPGSubsampling = IJL_411; // 4:1:1 subsampling.
jcprops.jquality = 75; // Select "good" image quality

// Write the actual JPEG image from the pixel buffer.
jerr = ijlWrite (&jcprops,IJL_JFILE_WRITEWHOLEIMAGE);

Inside the Library

5-17

5
if(IJL_O K ! = jerr)
{

bre s = FALSE;
__leave;

}

} / / __try

__finally
{

/ / Clea n up th e Intel R JPEG Library.
ijlFree (&jcprops);

}

retur n bres;
} / / EncodeJPGFileFromDIB()

Interrupte d Encodin g and Decoding

The IJL is capable of interrupted encoding and decoding, and it may be
interrupted at any time by asserting the “interrupt” flag in the
JPEG_PROPERTIES data structure.

The IJL wil l return with status IJL_INTERRUPT_OK after completing
processing on the current Minimum Coded Unit (MCU). The encoding or
decoding process may be resumed at the same location by simply calling
the appropriate ijlRead () or ijlWrite () function. The user may
determine the location of the last decoded MCU via the lef t and top

entries in the ro i IJL_REC T structure inside of JPEG_PROPERTIES.

For example, the following code segment readsone MCU of JPEG data
into a (previously specified) buffer, then it returns and repeats the process
until the entire image has been decoded. This function can be used to
periodically suspend the JPEG encoding or decoding process.

Intel® JPEG Library Developer’s Guide

5-18

5
//--
// An example using the IntelR JPEG Library:
// -- Interrupted decoding.
//--
// In this example, we are doing full scale decoding.
// It could also be any of the scaled decoding modes.

BOOL DecodeJPGFileInterrupted(LPCSTR lpszPathName)
{

BOOL bres;
IJLERR jerr;
DWORD width;
DWORD height;
DWORD nchannels;
DWORD wholeimagesize;
BYTE* pixel_buf = NULL;

// Allocate the IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIESjcprops;

bres = TRUE;

__try
{

// Initialize the IntelR JPEG Library.
jerr = ijlInit (&jcprops);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

jcprops.JPGFile = const_cast<LPSTR>(lpszPathName);

// Get information on the JPEG image
// (i.e., width, height, and channels).
jerr = ijlRead (&jcprops, IJL_JFILE_READPARAMS);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

Inside the Library

5-19

5
// Set up local data.
width = jcprops.JPGWidth;
height = jcprops.JPGHeight;
nchannels = 3; // Decode int o a 3 channel pixel buffer.

// Compute size of desired pixel buffer.
wholeimagesize = (width * height * nchannels);

// Allocate memory to hold the decompressed image data.
pixel_buf = new BYTE [wholeimagesize];
if(NULL == pixel_buf)
{

bres = FALSE;
__leave;

}

// Set up the info on the desired DIB properties.
jcprops.DIBWidth = width;
jcprops.DIBHeight = height; // Implies a bottom-up DIB.
jcprops.DIBChannels = nchannels;
jcprops.DIBColor = IJL_BGR;
jcprops.DIBPadBytes = 0;
jcprops.DIBBytes = pixel_buf;

// Set the JPG color space ... this will always be
// somewhat of an educated guess at best because JPEG
// is "color blind" (i.e., nothing in the bit stream
// tells you what color space the data was encoded from).
// However, in this example we assume that we are
// reading JFIF files which means that 3 channel images
// are in the YCbCr color space and 1 channel images are
// in the Y color space.
switch(jcprops.JPGChannels)
{

case 1:
{

jcprops.JPGColor = IJL_G;
break;

}

case 3:

Intel® JPEG Library Developer’s Guide

5-20

5
{

jcprops.JPGColor = IJL_YCBCR;
break;

}

default:
{

// This catches everything else, but no
// color twist will be performed by the IJL.
jcprops.DIBColor = (IJL_COLOR)IJL_OTHER;
jcprops.JPGColor = (IJL_COLOR)IJL_OTHER;
break;

}
}

do
{

// Since the ROI values are updated following
// an interrupt. We need to "reset" the ROI
// values so that we continue to process over
// the entire image.
jcprops.jprops.roi.left = 0;
jcprops.jprops.roi.right = 0;
jcprops.jprops.roi.top = 0;
jcprops.jprops.roi.bottom = 0;

jcprops.jprops.interrupt = TRUE;

jerr = ijlRead (&jcprops, IJL_JFILE_READENTROPY);

} while(IJL_INTERRUPT_OK == jerr);

//
// ... now you probably want to do something with the
// decompressed image like display it ...
//

} // __try

__finally
{

Inside the Library

5-21

5
if(NUL L ! = pixel_buf)
{

delet e [] pixel_buf;
}

/ / Clea n up th e Intel R JPEG Library.
ijlFree (&jcprops);

}

retur n bres;
} / / DecodeJPGFileInterrupted()

//--
/ / An exampl e usin g th e Intel R JPEG Library:
/ / - - Decode imag e ro w by row.
//--
BOOL DecodeRowByRow(

LPCSTR lpszJpgName,
LPCSTR lpszBmpName)

{
int cnt;
int width;
int height;
int nchannels;
int bmp_pad;
int bmp_row_size;
int bmp_buf_size;
int current_row;
BOOL bres;
IJLERR jerr;
FILE* out_fil e = NULL;
BYTE* bmp_bit s = NULL;
BYTE* bmp_ro w = NULL;
BYTE* bmp_buf = NULL;
LPBITMAPFILEHEADER lpbmf h = NULL;
LPBITMAPINFOHEADER lpbmi h = NULL;
IJL_RECT local_roi;
JPEG_CORE_PROPERTIES jcprops;

bre s = TRUE;

Intel® JPEG Library Developer’s Guide

5-22

5
__try
{

// Initialize the Intel(R) JPEG Library.
jerr = ijlInit(&jcprops);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

jcprops.JPGFile = const_cast<LPSTR>(lpszJpgName);

// Get information on the JPEG image (i.e., width, height, and
channels).

jerr = ijlRead(&jcprops, IJL_JFILE_READPARAMS);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

width = jcprops.JPGWidth;
height = jcprops.JPGHeight;
nchannels = 3;

bmp_pad = IJL_DIB_PAD_BYTES(width,nchannels);

bmp_row_size = (width * nchannels) + bmp_pad;

// allocate buffer to hold one row DIB data
bmp_row = new BYTE [bmp_row_size];

if(NULL == bmp_row)
{

bres = FALSE;
__leave;

}

memset(bmp_row,0,bmp_row_size);

Inside the Library

5-23

5
bmp_buf_size = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER)

+ bmp_row_size * height;

// allocate buffer to hold entire DIB
bmp_buf = new BYTE [bmp_buf_size];

if(NULL == bmp_buf)
{

bres = FALSE;
__leave;

}

bmp_bits = reinterpret_cast<BYTE*>(bmp_buf +
sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER));

jcprops.DIBWidth = width;
jcprops.DIBHeight = height;
jcprops.DIBChannels = nchannels;
jcprops.DIBColor = IJL_BGR;
jcprops.DIBPadBytes = bmp_pad;
jcprops.DIBBytes = bmp_row;

// Set the JPG color space ... this will always be
// somewhat of an educated guess at best because JPEG
// is "color blind" (i.e., nothing in the bit stream
// tells you what color space the data was encoded from).
// However, in this example we assume that we are
// reading JFIF files which means that 3 channel images
// are in the YCbCr color space and 1 channel images are
// in the Y color space.
switch(jcprops.JPGChannels)
{

case 1:
{

jcprops.JPGColor = IJL_G;
break;

}

case 3:
{

jcprops.JPGColor = IJL_YCBCR;
break;

Intel® JPEG Library Developer’s Guide

5-24

5
}

default:
{

// This catches everything else, but no
// color twist will be performed by the IJL.
jcprops.DIBColor = (IJL_COLOR)IJL_OTHER;
jcprops.JPGColor = (IJL_COLOR)IJL_OTHER;
break;

}
}

//
// Below is main code to decode image row by row
//

current_row = 0;

do
{

// ROI is one row
local_roi.left = 0;
local_roi.top = current_row;
local_roi.right = width;
local_roi.bottom = current_row + 1;

jcprops.jprops.roi = local_roi;

// decode ROI
jerr = ijlRead(&jcprops, IJL_JFILE_READENTROPY);

if(IJL_ROI_OK != jerr)
{

bres = FALSE;
__leave;

}

// copy row data and reverse row order, to obtain bottom-left
DIB.

memcpy(bmp_bits + (heigh t - 1 - current_row) *
bmp_row_size,bmp_row,bmp_row_size);

Inside the Library

5-25

5
// advance to next row
current_row++;

} while(current_row != height);

//
// Now we have decoded image, and do anything on it.
// For example write to file...
//

lpbmfh = reinterpret_cast<LPBITMAPFILEHEADER>(bmp_buf);

lpbmfh->bfType = 'MB';
lpbmfh->bfSize = bmp_buf_size;
lpbmfh->bfReserved1 = 0;
lpbmfh->bfReserved2 = 0;
lpbmfh->bfOffBits = sizeof(BITMAPFILEHEADER) +

sizeof(BITMAPINFOHEADER);

lpbmih = reinterpret_cast<LPBITMAPINFOHEADER>(bmp_buf +
sizeof(BITMAPFILEHEADER));

lpbmih->biSize = sizeof(BITMAPINFOHEADER);
lpbmih->biWidth = width;
lpbmih->biHeight = height;
lpbmih->biPlanes = 1;
lpbmih->biBitCount = 24;
lpbmih->biCompression = BI_RGB;
lpbmih->biSizeImage = 0;
lpbmih->biXPelsPerMeter = 0;
lpbmih->biYPelsPerMeter = 0;
lpbmih->biClrUsed = 0;
lpbmih->biClrImportant = 0;

out_file = fopen(lpszBmpName,"wb");

if(NULL == out_file)
{

bres = FALSE;
__leave;

Intel® JPEG Library Developer’s Guide

5-26

5
}

cnt = fwrite(bmp_buf,sizeof(BYTE),lpbmfh->bfSize,out_file);

if(cnt != lpbmfh->bfSize)
{

bres = FALSE;
__leave;

}

} // __try

__finally
{

if(NULL != bmp_row)
{

delete [] bmp_row;
}

if(NULL != bmp_buf)
{

delete [] bmp_buf;
}

if(NULL != out_file)
{

fclose(out_file);
}

// Clean up the IntelR JPEG Library.
ijlFree(&jcprops);

}

return bres;
} // DecodeRowByRow()

Inside the Library

5-27

5
//--
// An example using the IntelR JPEG Library:
// -- Encode image by one MCU at a time.
//--

/*
// get_dib_parameters()
//
// Purpose
// gets image sizes from BMP file
//
// Parameters
// FILE* bmp_file - input BMP file to gets data from
// int* width - pointer to variable to store image width
// int* height - pointer to variable to store image height
// int* nchannels - pointer to variable to store image number of
channels
//
// Returns
// 0 - if read was successfully, if bmp_file is valid 24 bits per
pixel bitmap
// -1 - if error has occured
//
*/

static int get_dib_parameters(
FILE* bmp_file,
int* width,
int* height,
int* nchannels)

{
int res;
int cnt;
BITMAPFILEHEADER bfh;
BITMAPINFOHEADER bih;

cnt = fread(&bfh,sizeof(BYTE),sizeof(BITMAPFILEHEADER),bmp_file);

if(cnt != sizeof(BITMAPFILEHEADER))
{

res = -1;

Intel® JPEG Library Developer’s Guide

5-28

5
goto Exit;

}

if(bfh.bfType != 'MB')
{

res = -1;
goto Exit;

}

cnt = fread(&bih,sizeof(BYTE),sizeof(BITMAPINFOHEADER),bmp_file);

if(cnt != sizeof(BITMAPINFOHEADER))
{

res = -1;
goto Exit;

}

if(bih.biBitCount != 24 || bih.biCompression != BI_RGB)
{

res = -1;
goto Exit;

}

*width = bih.biWidth;
*height = bih.biHeight;
*nchannels = 3;

res = 0;

Exit:

return res;
} // get_dib_parameters()

/*
// get_dib_chunk_data()
//
// Purpose
// gets chunk of data from BMP file.
//

Inside the Library

5-29

5
// Parameters
// FILE* bmp_file - input BMP file to gets data from
// int dib_chunk_size - size of chunk of data
// BYTE* dib_chunk_ptr - pointer to store data
//
// Return
// 0 - if read was successfully, even if have reached the end of a
file
// -1 - if error has occured
//
// Note
// It is assumed that the file pointer has a correct position.
// For bottom-up DIBs, it is necessary to invert the order of scan
lines
// that is read from a file. Here for simplification we do not make
it.
//
*/

static int get_dib_chunk_data(
FILE* bmp_file,
int dib_chunk_size,
BYTE* dib_chunk_ptr)

{
int cnt;
int res;

res = 0;

cnt = fread(dib_chunk_ptr,sizeof(BYTE),dib_chunk_size,bmp_file);

if(cnt < dib_chunk_size)
{

res = ferror(bmp_file);
if(0 != res)
{

res = -1;
}

}

return res;
} // get_dib_chunk_data()

Intel® JPEG Library Developer’s Guide

5-30

5
/*
// ijl_compress_large_dib()
//
// Purpose
// to demonstrate one techniques to compress large DIBs
// on mcu line by mcu line basis.
//
// Parameters
// char* bmp_file - ASCIIZ string with input BMP file name
// char* jpg_file - ASCIIZ string with output JPG file name
//
// Returns
// 0 - if success
// -1 - if error has occured
//
*/

static int ijl_compress_large_dib(
char* bmp_name,
char* jpg_name)

{
int i;
int j;
int res;
int width;
int height;
int mcu_width;
int mcu_height;
int num_x_mcu;
int num_y_mcu;
int dib_line_size;
int nchannels;
int dib_chunk_size;
BYTE* dib_chunk_ptr;
FILE* bmp_file;
IJLERR jerr;
JPEG_CORE_PROPERTIES jcprops;

dib_chunk_ptr = NULL;

bmp_file = fopen(bmp_name,"rb");

Inside the Library

5-31

5
if(NULL == bmp_file)
{

res = -1;
goto Exit;

}

// read source image parameters
res = get_dib_parameters(bmp_file,&width,&height,&nchannels);

if(res != 0)
{

goto Exit;
}

jerr = ijlInit(&jcprops);

if(IJL_OK != jerr)
{

res = -1;
goto Exit;

}

jcprops.DIBChannels = nchannels;
jcprops.DIBWidth = width;
jcprops.DIBHeight = height;
jcprops.DIBPadBytes = IJL_DIB_PAD_BYTES(width,nchannels);
jcprops.DIBColor = IJL_BGR;
jcprops.DIBSubsampling = (IJL_DIBSUBSAMPLING)IJL_NONE;

jcprops.JPGFile = jpg_name;

jcprops.JPGBytes = NULL;
jcprops.JPGSizeBytes = 0;

jcprops.JPGChannels = nchannels;
jcprops.JPGWidth = width;
jcprops.JPGHeight = height;
jcprops.JPGColor = IJL_YCBCR;
jcprops.JPGSubsampling = IJL_411;

jcprops.jquality = 75;

Intel® JPEG Library Developer’s Guide

5-32

5
// sizes of mcu depend on subsampling
switch(jcprops.JPGSubsampling)
{
case IJL_NONE:

mcu_width = 8;
mcu_height = 8;
break;

case IJL_422:
mcu_width = 16;
mcu_height = 8;
break;

case IJL_411:
mcu_width = 16;
mcu_height = 16;
break;

default:
res = -1;
goto Exit;

}

// calculate number of mcu in image
num_x_mcu = (width + mcu_width - 1) / mcu_width;
num_y_mcu = (height + mcu_height - 1) / mcu_height;

dib_line_size = width * nchannels +
IJL_DIB_PAD_BYTES(width,nchannels);

dib_chunk_size = dib_line_size * mcu_height;

// allocate memory to hold one mcu line
dib_chunk_ptr = new BYTE [dib_chunk_size];

if(NULL == dib_chunk_ptr)
{

res = -1;
goto Exit;

}

// make illusion to IJL, that it is work with buffer

Inside the Library

5-33

5
jcprops.DIBBytes = dib_chunk_ptr;

// process num_y_mcu line
for(j = 0 ; j < num_y_mcu; j++)
{

// get next mcu line from BMP file
res = get_dib_chunk_data(bmp_file,dib_chunk_size,dib_chunk_ptr);

if(res != 0)
{

goto Exit;
}

// it is actually used pointer
jcprops.jprops.state.DIB_ptr = dib_chunk_ptr;

// process num_x_mcu in mcu line
for(i = 0 ; i < num_x_mcu; i++)
{

// interrupt after each mcu
jcprops.jprops.interrupt = 1;

// compress current mcu (advance pointer to next mcu is internal
job)

jerr = ijlWrite(&jcprops,IJL_JFILE_WRITEWHOLEIMAGE);

if(IJL_INTERRUPT_OK == jerr)
{

// current mcu was encoded successfully
continue;

}

if(IJL_OK == jerr)
{

// job is complete: all image is processed
res = 0;
break;

}

if(IJL_OK > jerr)
{

// error occured

Intel® JPEG Library Developer’s Guide

5-34

5
res = -1;
break;

}
}

}

// if after processing num_y_mcu lines the library returns
IJL_INTERRUPT_OK,

// it is to mean that some data are still keeping in internal
buffers. Need to flush it.

if(IJL_INTERRUPT_OK == jerr)
{

// flush data from internal buffers
jcprops.jprops.interrupt = 1;

jerr = ijlWrite(&jcprops,IJL_JFILE_WRITEWHOLEIMAGE);

if(IJL_OK != jerr)
{

res = -1;
goto Exit;

}
}

res = 0;

Exit:

if(NULL != bmp_file)
{

fclose(bmp_file);
}

if(NULL != dib_chunk_ptr)
{

delete [] dib_chunk_ptr;
}

ijlFree(&jcprops);

return res;
} // ijl_compress_large_dib()

Inside the Library

5-35

5
Rectangle-of-Interest Decoding

Frequently only a portion of an image needs to be decompressed and
displayed on the screen at any time. For example, a portion of a JPEG
image may be displayed and “panned” at the user’s request. Using this
model, an application’s architecture becomes much more efficient and the
end-user gets to see the decoded image displayed in a significantly shorter
amount of time.

To efficiently manage these situations, an application may request a
rectangle-of-interest (ROI) to be decoded from the JPEG image by filling
in the IJL_RECT structure inJPEG_PROPERTIESbefore decoding image
data. Subsequent accesses to the IJL may be accelerated by simply
modifying the ROI values and callingijlRead() .

The IJL uses several technologies designed to quickly access a given ROI
in an image, and stores information from previous ROI passes to speed
“panning” around an image.

The following code segment illustrates ROI decoding to fill an image
buffer in two passes.

//--
// An example using the IntelR JPEG Library:
// -- Decode a JPEG image from a JFIF file using
// the Rectangle-Of-Interest (ROI) method.
//--

BOOL DecodeJPGFileByROI(LPCSTR lpszPathName)
{

BOOL bres;
IJLERR jerr;
DWORD width;
DWORD height;
DWORD nchannels;
DWORD wholeimagesize;
BYTE* pixel_buf = NULL;
IJL_RECT local_roi;

// Allocate the IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIESjcprops;

Intel® JPEG Library Developer’s Guide

5-36

5
bres = TRUE;

__try
{

// Initialize the IntelR JPEG Library.
jerr = ijlInit (&jcprops);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

jcprops.JPGFile = const_cast<LPSTR>(lpszPathName);

// Get information on the JPEG image
// (i.e., width, height, and channels).
jerr = ijlRead (&jcprops, IJL_JFILE_READPARAMS);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

// Set up local data.
width = jcprops.JPGWidth;
height = jcprops.JPGHeight;
nchannels = 3;

// Decode int o a 3 channel pixel buffer.
// For this example, we will allocate an image buffer half
// as big as the input image. Then, we will decode the
// top half and bottom half of the image separately.
// This could of course be extended to partition the image
// into several rectangular tiles which would require a small
// (or fixed size) image buffer. This technique yields
// greatly increased memory performance for most
// applications!
wholeimagesize = width * ((height + 1) >> 1) * nchannels;

// Allocate memory to hold the decompressed image data.
pixel_buf = new BYTE [wholeimagesize];

Inside the Library

5-37

5
if(NULL == pixel_buf)
{

bres = FALSE;
__leave;

}

// Set up the info on the desired DIB properties.
jcprops.DIBWidth = width;
// Set a bottom-up DIB of half the original image size.
jcprops.DIBHeight = (height + 1) >> 1;
jcprops.DIBChannels = nchannels;
jcprops.DIBColor = IJL_BGR;
jcprops.DIBPadBytes = 0;
jcprops.DIBBytes = pixel_buf;

// Set the JPG color space ... this will always be
// somewhat of an educated guess at best because JPEG
// is "color blind" (i.e., nothing in the bit stream
// tells you what color space the data was encoded from).
// However, in this example we assume that we are
// reading JFIF files which means that 3 channel images
// are in the YCbCr color space and 1 channel images are
// in the Y color space.
switch(jcprops.JPGChannels)
{

case 1:
{

jcprops.JPGColor = IJL_G;
break;

}

case 3:
{

jcprops.JPGColor = IJL_YCBCR;
break;

}

default:
{

// This catches everything else, but no
// color twist will be performed by the IJL.
jcprops.DIBColor = (IJL_COLOR)IJL_OTHER;

Intel® JPEG Library Developer’s Guide

5-38

5
jcprops.JPGColor = (IJL_COLOR)IJL_OTHER;
break;

}
}

// Get the top half of the image.
local_roi.left = 0;
local_roi.top = 0;
local_roi.right = width;
local_roi.bottom = (height + 1) >> 1;

jcprops.jprops.roi = local_roi;

// Now actually get the top half of the JPEG image data
// into the pixel buffer.
jerr = ijlRead (&jcprops, IJL_JFILE_READENTROPY);
if(IJL_ROI_OK != jerr)
{

bres = FALSE;
__leave;

}

// ... now you probably want to do something with the
// decompressed top half of the image like display it ...

// Next, get the bottom half of the image.
local_roi.left = 0;
local_roi.top = (height + 1) >> 1;
local_roi.right = width;
local_roi.bottom = height;

jcprops.jprops.roi = local_roi;

// Now actually get the bottom half of the JPEG image data
// into the pixel buffer.
jerr = ijlRead (&jcprops, IJL_JFILE_READENTROPY);
if(IJL_ROI_OK != jerr)
{

bres = FALSE;
__leave;

Inside the Library

5-39

5
}

// ... now you probably want to do something with the
// decompressed bottom half of the image like display it ...
//

} // __try

__finally
{

if(NULL != pixel_buf)
{

delete [] pixel_buf;
}

// Clean up the IntelR JPEG Library.
ijlFree (&jcprops);

}

return bres;
} // DecodeJPGFileByROI()

Intel® JPEG Library Developer’s Guide

5-40

5
Scaled Decoding

Most JPEG images can be efficiently decoded at 1/2, 1/4, or 1/8 the
original image resolution. This is known as “scaled decoding”, and it is
typically at least two times faster than decoding an entire image. The IJL
supports scaled decoding in parallel with rectangle-of-interest and
interrupted decoding.

In practice, scaled decoding is very useful for generating “thumbnails”
from JPEG images that do not already contain a thumbnail embedded in
their bit stream.

The following table (Table 5-1) shows the calculations needed to determine
the resulting scaled image size from an original JPEG image of size
(Width x Height).

Table 5-1 Scaled Decoding Calculations

Scaled
Decoding Type Resulting Width’ & Height’ I/O Type Specifier

1/2 Size Width’ = INT((Width + 1) / 2)

Height’ = INT((Height + 1) / 2)

IJL_JXXXX_READONEHALF

1/4 Size Width’ = INT((Width + 3) / 4)

Height’ = INT((Height + 3) / 4)

IJL_JXXXX_READONEQUARTER

1/8 Size Width’ = INT((Width + 7) / 8)

Height’ = INT((Height + 7) / 8)

IJL_JXXXX_READONEEIGHTH

To compute the size of the scaled image, use the following macro,
included in theijl.h file:

IJL_DIB_SCALE_SIZE(jpgsize, scale) =
(((jpgsize)+(scale)-1)/(scale))

For example, an image of 2407 x 491 pixels would have a 1/8 scaled size
of 301 x 62 pixels.

Inside the Library

5-41

5
The following code illustrates scaled decoding of a JPEG image to generate
a 1/8 sized version of the original JPEG image.

//--
// An example using the IntelR JPEG Library:
// -- Decode a JPEG image from a JFIF file.
// using the scaled decoding method.
//--

BOOL DecodeJPGFileOneEighth(LPCSTR lpszPathName)
{

BOOL bres;
IJLERR jerr;
DWORD width;
DWORD height;
DWORD nchannels;
DWORD wholeimagesize;
BYTE* pixel_buf = NULL;

// Allocate the IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIESjcprops;

bres = TRUE;

__try
{

// Initialize the IntelR JPEG Library.
jerr = ijlInit (&jcprops);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

jcprops.JPGFile = const_cast<LPSTR>(lpszPathName);

// Get information on the JPEG image
// (i.e., width, height, and channels).
jerr = ijlRead (&jcprops, IJL_JFILE_READPARAMS);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

Intel® JPEG Library Developer’s Guide

5-42

5
}

// Set up local data.
// Note: In this case, width and height are rounded
// to the nearest factor of eight.
width = (jcprops.JPGWidth + 7) >> 3;
height = (jcprops.JPGHeight + 7) >> 3;
nchannels = 3; // Decode int o a 3 channel pixel buffer.

wholeimagesize = (width * height * nchannels);

// Allocate memory to hold the decompressed image data.
pixel_buf = new BYTE [wholeimagesize];
if(NULL == pixel_buf)
{

bres = FALSE;
__leave;

}

// Set up the info on the desired DIB properties.
jcprops.DIBWidth = width;
jcprops.DIBHeight = height; // Implies a bottom-up DIB.
jcprops.DIBChannels = nchannels;
jcprops.DIBColor = IJL_BGR;
jcprops.DIBPadBytes = 0;
jcprops.DIBBytes = pixel_buf;

// Set the JPG color space ... this will always be
// somewhat of an educated guess at best because JPEG
// is "color blind" (i.e., nothing in the bit stream
// tells you what color space the data was encoded from).
// However, in this example we assume that we are
// reading JFIF files which means that 3 channel images
// are in the YCbCr color space and 1 channel images are
// in the Y color space.
switch(jcprops.JPGChannels)
{

case 1:
{

jcprops.JPGColor = IJL_G;
break;

}

Inside the Library

5-43

5
case 3:
{

jcprops.JPGColor = IJL_YCBCR;
break;

}

default:
{

// This catches everything else, but no
// color twist will be performed by the IJL.
jcprops.DIBColor = (IJL_COLOR)IJL_OTHER;
jcprops.JPGColor = (IJL_COLOR)IJL_OTHER;
break;

}
}

// Now get the actual JPEG image data into the pixel buffer
// and scale the output to 1/8 th the original size.
jerr = ijlRead (&jcprops, IJL_JFILE_READONEEIGHTH);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

//
// ... now you probably want to do something with the
// decompressed scaled image like display it ...
//

}

__finally
{

if(NULL != pixel_buf)
{

delete [] pixel_buf;
}

// Clean up the IntelR JPEG Library.

Intel® JPEG Library Developer’s Guide

5-44

5
ijlFree (&jcprops);

}

return bres;
} // DecodeJPGFileOneEighth()

Embedded Thumbnail Decoding

The IJL supports decoding some types of thumbnails embedded in JFIF
compliant images. Specifically, the IJL supports decoding of
uncompressed RGB thumbnails (either 1 byte/pixel or 3 bytes/pixel) as
stored in accordance with the JFIF specification versions 1.01 and 1.02.
Thumbnails compressed using JPEG are not supported at this time.

Before attempting to decode an embedded thumbnail, the user must
provide a 24-bit DIB of at least 256x256 pixels. This is because the
maximum dimensions of an embedded JFIF thumbnail are 256x256 pixels.
Also, if the user wants the thumbnail decoded into packed 24-bit RGB
values, then theDIBColor field needs to be set toIJL_RGB (otherwise it
will be decoded into packed 24-bit BGR values).

Then, in order to actually decode the embedded thumbnail, the user needs
to set theIJLIOTYPE parameter toIJL_JXXXX_READTHUMBNAILwhen
calling ijlRead() . This IJLIOTYPE may be used interchangeably with
IJL_JXXXX_READPARAMSon JFIF images. After this function call, the
JPEG_CORE_PROPERTIESdata structure is updated as follows:

1. The thumbnail’s width and height (in pixels) are stored in the
JPGThumbWidth andJPGThumbHeight fields (values of 0 indicate no
embedded thumbnail present or an unsupported thumbnail), and

2. Decoded pixel values are placed into the buffer pointed to by the
DIBBytes field.

In practice, embedded thumbnails have been only rarely found in standard
(i.e., non-proprietary) formats in typical JPEG images. The IJL does not
support proprietary embedded thumbnails.

Inside the Library

5-45

5
Progressiv e Image Support

Decoding of Progressive DCT-based JPEG images is supported by the IJL.
Progressive image decoding is transparent to the end user and requires no
special support from the developer (i.e., the IJL does not support
progressive display of the image).

Starting from version 1.5, the IJL supports authoring (encoding) of
progressive images (note that restart intervals for encoding are not
currently supported).
To create a progressive JPEG image, the user should call the library
function ijlWrite() with the progressive_foun d field set to 1 in the
JPEG_PROPERTIES structure. The following code sequence may serve as
an example:

...
JPEG_CORE_PROPERTIES jcprops;
...
ijlInit (&jcprops);
....

/ / Request to create a progressive image

jcprops.jprops.progressive_foun d = 1;

ijlWrite (&jcprops,IJL_JXXXX_WRITEWHOLEIMAGE);

The resulting image can be written either to a fil e (if ijlWrite() is called
with second parameter set to IJL_JFILE_WRITEWHOLEIMAGE) or a
previously allocated memory buffer (for calls with
IJL_JBUFF_WRITEWHOLEIMAGE).

The progressive encoding algorithm, which can be either successive
approximation or spectral selection, and thenumber of scans, are fixed in
the library and cannot be changed by the user. Theseparameters are set
depending on the number of channels and color space of the JPEG image.
The library supports the following sets of progressive encoding parameters:

for 1-channel IJL_ G images:
scan count is 6, with parameters per each pass as

Intel® JPEG Library Developer’s Guide

5-46

5
1 scan; DC component 0; ss = 0, se = 63; ah = 0, al = 1
2 scan; AC component 0; ss = 1, se = 5; ah = 0, al = 2
3 scan; AC component 0; ss = 6, se = 63; ah = 0, al = 2
4 scan; AC component 0; ss = 1, se = 63; ah = 2, al = 1
5 scan; DC component 0; ss = 0, se = 63; ah = 1, al = 0
6 scan; AC component 0; ss = 1, se = 63; ah = 1, al = 0

for 3-channelIJL_YCBCR images:
scan count is 10, with parameters per each pass as

1 scan; DC components 0,1,2; ss = 0, se = 63; ah = 0, al = 1
2 scan; AC component 0; ss = 1, se = 5; ah = 0, al = 2
3 scan; AC component 2; ss = 1, se = 63; ah = 0, al = 2
4 scan; AC component 1; ss = 1, se = 63; ah = 0, al = 2
5 scan; AC component 0; ss = 6, se = 63; ah = 0, al = 2
6 scan; AC component 0; ss = 1, se = 63; ah =2, al = 1
7 scan; DC components 0,1,2; ss = 0, se = 63; ah = 1, al = 0
8 scan; AC component 2; ss = 1, se = 63; ah = 1, al = 0
9 scan; AC component 1; ss = 1, se = 63; ah = 1, al = 0
10 scan; AC component 0; ss = 1, se = 63; ah = 1, al = 0

for 3-channelIJL_RGB images:
scan count is 8, with parameters per each pass as

1 scan; DC components 0,1,2; ss = 0, se = 63; ah = 0, al = 1
2 scan; AC component 0; ss = 1, se = 5; ah = 0, al = 0
3 scan; AC component 1; ss = 1, se = 5; ah = 0, al = 0
4 scan; AC component 2; ss = 1, se = 5; ah = 0, al = 0
5 scan; DC component 0,1,2; ss =0, se = 63; ah = 1, al = 0
6 scan; AC component 0; ss = 6, se = 63; ah =0, al = 0
7 scan; AC component 1; ss = 6, se = 63; ah = 0, al = 0
8 scan; AC component 2; ss = 6, se = 63; ah = 0, al = 0

for 3-channelIJL_OTHER images:
scan count is 8, with parameters per each pass as

1 scan; DC components 0,1,2; ss = 0, se = 63; ah = 0, al = 1
2 scan; AC component 0; ss = 1, se = 5; ah = 0, al = 0
3 scan; AC component 1; ss = 1, se = 5; ah = 0, al = 0
4 scan; AC component 2; ss = 1, se = 5; ah = 0, al = 0
5 scan; DC component 0,1,2; ss =0, se = 63; ah = 1, al = 0
6 scan; AC component 0; ss = 6, se = 63; ah =0, al = 0
7 scan; AC component 1; ss = 6, se = 63; ah = 0, al = 0
8 scan; AC component 2; ss = 6, se = 63; ah = 0, al = 0

Inside the Library

5-47

5
for 4-channelIJL_RGBA_FPX images:
scan count is 10, with parameters per each pass as

1 scan; DC components 0,1,2,3; ss =0, se = 63; ah = 0, al = 1
2 scan; AC component 0; ss = 1, se = 5; ah = 0, al = 0
3 scan; AC component 1; ss = 1, se = 5; ah = 0, al = 0
4 scan; AC component 2; ss = 1, se = 5; ah = 0, al = 0
5 scan; AC component 3; ss = 1, se = 5; ah = 0, al = 0
6 scan; DC component 0,1,2,3; ss =0, se = 63; ah = 1, al = 0
7 scan; AC component 0; ss = 6, se = 63; ah =0, al = 0
8 scan; AC component 1; ss = 6, se = 63; ah = 0, al = 0
9 scan; AC component 2; ss = 6, se = 63; ah = 0, al = 0
10 scan; AC component 3; ss = 6, se = 63; ah = 0, al = 0

for 4-channelIJL_YCBCRA_FPX images:
scan count is 11, with parameters per each pass as

1 scan; DC components 0,1,2, 3; ss =0, se = 63; ah = 0, al = 1
2 scan; AC component 0; ss = 1, se = 5; ah = 0, al = 2
3 scan; AC component 2; ss = 1, se = 63; ah = 0, al = 1
4 scan; AC component 1; ss = 1, se = 63; ah = 0, al = 1
5 scan; AC component 3; ss = 1, se = 63; ah = 0, al = 0
6 scan; AC component 0; ss = 6, se = 63; ah = 0, al = 2
7 scan; AC component 0; ss = 1, se = 63; ah =2, al = 1
8 scan; DC components 0,1,2,3; ss =0, se = 63; ah = 1, al = 0
9 scan; AC component 2; ss = 1, se = 63; ah = 1, al = 0
10 scan; AC component 1; ss = 1, se = 63; ah = 1, al = 0
11 scan; AC component 0; ss = 1, se = 63; ah = 1, al = 0

for 4-channelIJL_OTHER images:
scan count is 10, with parameters per each pass as

1 scan; DC components 0,1,2,3; ss =0, se = 63; ah = 0, al = 1
2 scan; AC component 0; ss = 1, se = 5; ah = 0, al = 0
3 scan; AC component 1; ss = 1, se = 5; ah = 0, al = 0
4 scan; AC component 2; ss = 1, se = 5; ah = 0, al = 0
5 scan; AC component 3; ss = 1, se = 5; ah = 0, al = 0
6 scan; DC component 0,1,2,3; ss =0, se = 63; ah = 1, al = 0
7 scan; AC component 0; ss = 6, se = 63; ah =0, al = 0
8 scan; AC component 1; ss = 6, se = 63; ah = 0, al = 0
9 scan; AC component 2; ss = 6, se = 63; ah = 0, al = 0
10 scan; AC component 3; ss = 6, se = 63; ah = 0, al = 0

Intel® JPEG Library Developer’s Guide

5-48

5
In the above list we use the following notation:
ss – the first index in the spectral selection band;
se – the last index in the spectral selection band;
ah – the highest bit in the successive aproximation;
al – the lowest bit in the successive aproximation.

Accessin g JPEG Images From a Buffer

JPEG is used asa compression standard in the FlashPix and TIFF 6.0 file
formats, and the IJL supports decoding of data from these sources.
FlashPix and/or TIFF codecs may extract JPEG data and provide a buffer
(as opposed to a file) to the IJL, or they may require JPEG data to be
buffered before output.
Note that the IJL allows JPEG data to be read from, or written to, a buffer
in all access modes. Certain applications may find buffer-based JPEG
access significantly faster than file-based JPEG access.

To write JPEG data to a buffer, do the following:

• Allocate a buffer of sufficient size (usually the buffer equal to the size
of uncompressed data wil l suffice). If the buffer size is not enough, the
IJL wil l return the error code IJL_BUFFER_TOO_SMALL.
• Set the necessary fields in the JPEG_CORE_PROPERTIES structure as

JPGFil e = NULL

JPGByte s = pointer to the allocated buffer
JPGSizeByte s = buffer size in bytes

• Call the ijlWrite() function with IJL_BUFF_WRITEWHOLEIMAGE as
its second parameter. On return, the buffer wil l contain the created JPEG
data, and the JPGSizeByte s field wil l specify the actual JPEG data size
in bytes. Note that earlier library versions returned incorrect JPEG data
size in the buffer and replaced thepointer to the buffer. This bug was
fixed in the IJL version 1.5.

To decode JPEG data from a buffer, follow these steps:

• Get the buffer with JPEG data
• Set the fields in the JPEG_CORE_PROPERTIES structure as

JPGFil e = NULL

Inside the Library

5-49

5
JPGBytes = pointer to the buffer with JPEG data
JPGSizeBytes = buffer size in bytes

• Call theijlRead() function with IJL_BUFF_READEWHOLEIMAGEas
its second parameter.

The code examples below illustrate how to read JPEG data from a buffer,
or write them to a buffer.

//--
// An example using the Intel(R) JPEG Library:
// -- Decode image from a JFIF buffer.
//--

BOOL DecodeFromJPEGBuffer(
BYTE* lpJpgBuffer,
DWORD dwJpgBufferSize,
BYTE** lppRgbBuffer,
DWORD* lpdwWidth,
DWORD* lpdwHeight,
DWORD* lpdwNumberOfChannels)

{
BOOL bres;
IJLERR jerr;
DWORD dwWholeImageSize;
BYTE* lpTemp = NULL;

// Allocate the IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIES jcprops;

bres = TRUE;

__try
{

// Initialize the Intel(R) JPEG Library.
jerr = ijlInit(&jcprops);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

// Get information on the JPEG image
// (i.e., width, height, and channels).

Intel® JPEG Library Developer’s Guide

5-50

5
jcprops.JPGFile = NULL;
jcprops.JPGBytes = lpJpgBuffer;
jcprops.JPGSizeBytes = dwJpgBufferSize;

jerr = ijlRead(&jcprops, IJL_JBUFF_READPARAMS);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

// Set the JPG color space ... this will always be
// somewhat of an educated guess at best because JPEG
// is "color blind" (i.e., nothing in the bit stream
// tells you what color space the data was encoded from).
// However, in this example we assume that we are
// reading JFIF files which means that 3 channel images
// are in the YCbCr color space and 1 channel images are
// in the Y color space.

switch(jcprops.JPGChannels)
{

case 1:
{

jcprops.JPGColor = IJL_G;
jcprops.DIBColor = IJL_RGB;
jcprops.DIBChannels = 3;
break;

}

case 3:
{

jcprops.JPGColor = IJL_YCBCR;
jcprops.DIBColor = IJL_RGB;
jcprops.DIBChannels = 3;
break;

}

default:
{

// This catches everything else, but no
// color twist will be performed by the IJL.

Inside the Library

5-51

5
jcprops.JPGColor = IJL_OTHER;
jcprops.DIBColor = IJL_OTHER;
jcprops.DIBChannels = jcprops.JPGChannels;
break;

}
}

// Compute size of desired pixel buffer.
dwWholeImageSize = jcprops.JPGWidth * jcprops.JPGHeight *

jcprops.DIBChannels;

// Allocate memory to hold the decompressed image data.
lpTemp = new BYTE [dwWholeImageSize];
if(NULL == lpTemp)
{

bres = FALSE;
__leave;

}

// Set up the info on the desired DIB properties.
jcprops.DIBWidth = jcprops.JPGWidth;
jcprops.DIBHeight = jcprops.JPGHeight;
jcprops.DIBPadBytes = 0;
jcprops.DIBBytes = lpTemp;

// Now get the actual JPEG image data into the pixel buffer.
jerr = ijlRead(&jcprops, IJL_JBUFF_READWHOLEIMAGE);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

} // __try

__finally
{

if(FALSE == bres)
{

if(NULL != lpTemp)
{

delete [] lpTemp;

Intel® JPEG Library Developer’s Guide

5-52

5
lpTemp = NULL;

}
}

// Clean up the Intel(R) JPEG Library.
ijlFree(&jcprops);

*lpdwWidth = jcprops.DIBWidth;
*lpdwHeight = jcprops.DIBHeight;
*lpdwNumberOfChannels = jcprops.DIBChannels;
*lppRgbBuffer = lpTemp;

} // __finally

return bres;
} // DecodeFromJPEGBuffer()

//--
// An example using the Intel(R) JPEG Library:
// -- Encode Windows DIB to JPEG buffer.
//--

BOOL EncodeToJPEGBuffer(
BYTE* lpRgbBuffer,
DWORD dwWidth,
DWORD dwHeight,
BYTE** lppJpgBuffer,
DWORD* lpdwJpgBufferSize)

{
BOOL bres;
IJLERR jerr;
DWORD dwRgbBufferSize;
BYTE* lpTemp;

// Allocate the IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIES jcprops;

bres = TRUE;

__try
{

// Initialize the Intel(R) JPEG Library.

Inside the Library

5-53

5
jerr = ijlInit(&jcprops);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

dwRgbBufferSize = dwWidth * dwHeight * 3;

lpTemp = new BYTE [dwRgbBufferSize];
if(NULL == lpTemp)
{

bres = FALSE;
__leave;

}

// Set up information to write from the pixel buffer.
jcprops.DIBWidth = dwWidth;
jcprops.DIBHeight = dwHeight; // Implies a bottom-up DIB.
jcprops.DIBBytes = lpRgbBuffer;
jcprops.DIBPadBytes = 0;
jcprops.DIBChannels = 3;
jcprops.DIBColor = IJL_RGB;

jcprops.JPGWidth = dwWidth;
jcprops.JPGHeight = dwHeight;
jcprops.JPGFile = NULL;
jcprops.JPGBytes = lpTemp;
jcprops.JPGSizeBytes = dwRgbBufferSize;
jcprops.JPGChannels = 3;
jcprops.JPGColor = IJL_YCBCR;
jcprops.JPGSubsampling = IJL_411; // 4:1:1 subsampling.
jcprops.jquality = 75; // Select "good" image quality

// Write the actual JPEG image from the pixel buffer.
jerr = ijlWrite(&jcprops,IJL_JBUFF_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

Intel® JPEG Library Developer’s Guide

5-54

5
} // __try

__finally
{

if(FALSE == bres)
{

if(NULL != lpTemp)
{

delete[] lpTemp;
lpTemp = NULL;

}
}

*lppJpgBuffer = lpTemp;
*lpdwJpgBufferSize = jcprops.JPGSizeBytes;

// Clean up the Intel(R) JPEG Library.
ijlFree(&jcprops);

}

return bres;
} // EncodeToJPEGBuffer()

Odd Data Formats

Most of today’s JPEG files are stored in the JPEG File Interchange Format
(JFIF), and the IJL supports JFIF version 1.02. JFIF is a minimal file
format that enables JPEG bit streams to be exchanged between a wide
variety of platforms and applications. One feature of JFIF is that it
specifies a standard color space. JFIF files are stored using either the
3-channel luminance/chrominance color space (YCbCr as defined by CCIR
601 (256 levels)), or the 1-channel grayscale color space (only the Y
component of YCbCr).

However, the JPEG interchange format (not JFIF) defines compressed data
storage formats that allow a great deal of flexibility to the representation of
a set of data. A JPEG bit stream may have many meanings other than the
common JFIF 3-channel, 2-D interleaved plane image data.

Inside the Library

5-55

5
A JPEG image does not necessarily contain any information that specifies
the color space of the image data. Any JPEG decoder is thus forced to
make assumptions about the color format of some JPEG images. Modern
file formats like TIFF 6.0 and FlashPix contain enough color space
information to avoid this ambiguity.

• JPEG is often called “color blind”. This is because nothing within a
JPEG bit stream indicates what color format was used to encode the
image data. When the color format of a JPEG image is unknown, or
not supported by the IJL (i.e., Adobe’s* CMYK), it is suggested that
the user specify theIJL_OTHER color space format for both the
JPGColor andDIBColor fields in theJPEG_CORE_PROPERTIESdata
structure. This technique prevents the IJL from applying a color space
conversion. Then, it becomes the user’s responsibility to perform their
own color space manipulation (if so desired) outside of the IJL.

• If a JPEG bit stream indicates that data will be stored in separate
planes, the IJL will present the data in a pixel-interleaved format. This
may cause unexpected results, especially for data represented using
multiple scans (i.e., one scan per block-row).

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Pre- and Post-Processing

6-1

6
DIBs

Image data in a Device Independent Bitmap (DIB) is stored in a byte
interleaved form, one byte (8-bits) per channel. For the most common
type, the Windows 24-bit DIB, the data is stored in a form graphically
illustrated by Figure 6-1.

Figure 6-1 Windows 24-bit DIB Data Format

B G R B G R B G

P ixe l (0 ,0) P ixe l (1 ,0) P ixel (n,0)

B

P ixel (0 ,1)P add ing
by tes added
to m ake D IB
linewid th lie
on 4-byte
boundary.

When authoring JPEG images, the IJL can receive input from a pixel
buffer. Likewise, when decoding JPEG images, the IJL can send the
output to a pixel buffer. The user has great freedom in specifying pixel
buffer formats with regards to the number of color channels, the color
space interpretation, and end-of-line padding.
The IJL supports input data with:

• Interleaved color planes.

Intel® JPEG Library Developer’s Guide

6-2

6
• Non-subsampled data (with the exception ofIJL_YCBCR color space,

in which case only 4:2:2 subsampled pixel interleaved data are
supported).

• Color channels from 1 to 255.
• Widths from 1 to 65,535.
• Heights from -65,535 to 65,535 (where values > 0 indicate a

bottom-up DIB).
• End-of-line padding, or pad bytes, must be >= 0.

Additionally, for thumbnail output DIBs, the width and the absolute value
of height must not exceed 255, and the color space must be either
3-channelIJL_RGB or IJL_BGR .

IJL Color Spaces

The following table (Table 6-1) illustrates the various DIB and JPEG color
spaces supported by the IJL.

Table 6-1 IJL Supported Color Spaces

IJL Color Space

Valid IJL
DIB Color
Space?

Valid IJL
JPEG Color
Space? Description

IJL_G Yes Yes Grayscale (luminance only) 1 channel color
space.

IJL_RGB Yes Yes RGB (red-green-blue) 3 or 4 channel color
space.

IJL_BGR Yes No RGB 3 channel color space where the byte
ordering has been reversed to BGR.

IJL_RGBA_FPX Yes Yes FlashPix RGB 4 channel color space with
pre-multiplied opacity.

continued*

Pre- and Post-Processing

6-3

6
IJL Colo r Space

Valid IJL
DIB Color
Space?

Valid IJL
JPEG Color
Space? Descri ption

IJL_YCBCR Yes Yes CCIR 601 YCbCr (luminance-chrominance)
3 channel color space. Starting from version
1.5, the IJL supports the specific 4:2:2
subsampled pixel interleaved format used
both as input data format for encoding, and
output data format for decoding. In this case
the data sequence is set to be Y0-Cb0-Y1-
Cr0-Y2-Cb1-Y3-Cr1-... .

IJL_YCBCRA_FPX No Yes FlashPix YCbCr 4 channel color space with
pre-multiplied opacity and the YCbCr values
are stored "flipped" (i.e., X' = 255 - X).

IJL_OTHER Yes Yes Unknown color space where the user
specifies the number of channels.

The IJL_ Gcolor space specifies that the DIB is stored in a Luminance only
format with 8-bits per channel. The color space is defined as the
Luminance (or Y) component of the standard YCbCr color space defined in
CCIR 601 for 256 levels (8-bit) per channel.

The IJL_RG B color space follows the 8-bits per color channel definition of
the sRGB color space. Data is stored Red, Green, Blue from the lowest to
the highest byte of a pixel.

The IJL_BG R color space is similar to the IJL_RG B color space except the
byte order of the three channels are flipped. Data is stored Blue, Green,
Red from the lowest to the highest bytes of a pixel. IJL_BG R is supported
to provide fast input and output from standard WindowsDIBs and Bitmaps
(which use aBGR byte order).

The IJL_RGBA_FPX and IJL_YCBCRA_FPX color spaces are FlashPix 4
channel color spaceswith pre-multiplied opacity and have been provided
for greater compatibility with FlashPix JPEG compressed files.

The IJL_YCBC R color space is the standard YCbCr color space defined in
CCIR 601 for 256 levels (8-bit) per channel. This is the color space used
in most JPEG images and is supported by JFIF, EXIF, TIFF, FlashPix,

Intel® JPEG Library Developer’s Guide

6-4

6
and SPIFF fil e formats among others. It is strongly recommended that
users author JPEG images in this color format (even when starting from a
monochrome or grayscale source). The IJL_YCBCRA_FPX color space is
not supported asvalid DIB format for encoding.

The IJL_OTHE R color space is used for user-defined or unknown DIB color
spaces. The IJL wil l not perform any color space conversion when
decoding JPEG images to an IJL_OTHE R DI B color space. It wil l simply
copy the appropriate number of channels from the source JPEG image.

Subsampling

The one (1) channel grayscale color space is not allowed to be subsampled.

Three (3) channel color spaces are allowed to be subsampled in either the
4:1:1 or the 4:2:2 formats. The 4:1:1 format is achieved by using a
horizontal sampling factor of 2 and a vertical sampling factor of 2 in both
the second and third channels. The 4:2:2 format is achieved by using a
horizontal sampling factor of 2 and a vertical sampling factor of 1 in both
the second and third channels. The non-subsampled format, or 1:1:1, is
denoted by a horizontal sampling factor of 1 and a vertical sampling factor
of 1 in all three channels.

Four (4) channel color spaces are allowed to be subsampled in either the
4:1:1:4 or the 4:2:2:4 formats. The 4:1:1:4 format is achieved by using a
horizontal sampling factor of 2 and a vertical sampling factor of 2 in both
the second and third channels. The 4:2:2:4 format is achieved by using a
horizontal sampling factor of 2 and a vertical sampling factor of 1 in both
the second and third channels. The non-subsampled format, or 1:1:1:1, is
denoted by a horizontal sampling factor of 1 and a vertical sampling factor
of 1 in all four channels. The fourth channel, the alpha channel, is never
allowed to be subsampled.

Al l neighboring pixels on a sampling interval are taken with equal weights
to form the resulting value.

Pre- and Post-Processing

6-5

6
Upsampling

The IJL decompresses images that can have arbitrary sampling factors and
maximum 10 blocks per each MCU, as compliant with JPEG standard. The
default algorithm for decoding subsampled images isIJL_BOX_FILTER ,
which means that the decoded pixel value is simply replicated as many
times as the sampling factors indicate. If both horizontal and vertical
sampling factors do not exceed 2, you can use upsampling with triangular
filter, which yields better results. For this purpose, set the
upsampling_type field in theJPEG_CORE_PROPERTIESstructure to
IJL_TRIANGLE_FILTER .
In scaled decoding of subsampled images (seeScaled Decoding) with
appropriately matching sampling factors (i.e. horizontal and vertical factors
are equal and do not exceed 2), upsampling can be replaced by performing
DCT of a larger size, which provides faster decoding with good image
quality results. The IJL implements that approach, for instance, in case of
scaled decoding of images at 1/2 size with upsampling 4:1:1.

Intel® JPEG Library Developer’s Guide

6-6

6
Decoding and Post-Processing Matrix

The following table illustrates permitted color space decoding
combinations and post-processing options in the IJL.

Table 6-2 IJL Decoding and Post-Processing Matrix

JPEG

Color Space

JPEG

Channels

DIB

Color Space

DIB

Channels

Format of

Decoded Data Post-Processing

IJL_G 1 IJL_G 1 Y, Y, … CC No & US No

IJL_G 1 IJL_RGB 3 YYY, YYY, … CC No & US No

IJL_G 1 IJL_BGR 3 YYY, YYY, …

(see note 1

below)

CC No & US No

IJL_G 1 IJL_RGBA_

FPX

4 YYYO, YYYO, … CC No & US No

IJL_RGB 3 IJL_RGB 3 RGB, RGB, … 1:1:1 CC No & US

No

4:1:1 CC No & US

Yes

4:2:2 CC No & US

Yes

IJL_RGB 3 IJL_BGR 3 BGR, BGR, … 1:1:1 CC No & US

No

4:1:1 CC No & US

Yes

4:2:2 CC No & US

Yes

continued

Pre- and Post-Processing

6-7

6
Table 6-2 IJL Decoding and Post-Processing Matrix (continued)

JPEG

Color Space

JPEG

Channels

DIB

Color Space

DIB

Channels

Format of

Decoded Data Post-Processing

IJL_RGB 3 IJL_RGBA_

FPX

4 RGBO, RGBO, … 1:1:1 CC No & US

No

4:1:1 CC No & US

Yes

4:2:2 CC No & US

Yes

IJL_RGBA_

FPX

4 IJL_RGBA_

FPX

4 RGBA, RGBA, …

(see note 2

below)

1:1:1:1 CC No &

US No

4:1:1:4 CC No &

US Yes

4:2:2:4 CC No &

US Yes

IJL_YCBCR 3 IJL_G 1 Y, Y, … 1:1:1 CC No & US

No

4:1:1 CC No & US

Yes

4:2:2 CC No & US

Yes

IJL_YCBCR 3 IJL_YCBCR 3 Y0-Cb0-Y1-Cr0-
Y2-Cb1-... (see

note 4 below)

4:2:2 CC No & US

No

IJL_YCBCR 3 IJL_RGB 3 RGB, RGB, … 1:1:1 CC Yes &

US No

4:1:1 CC Yes &

US Yes

4:2:2 CC Yes &

US Yes

continued

Intel® JPEG Library Developer’s Guide

6-8

6
Table 6-2 IJL Decoding and Post-Processing Matrix (continued)

JPEG

Color Space

JPEG

Channels

DIB

Color Space

DIB

Channels

Format of

Decoded Data Post-Processing

IJL_YCBCR 3 IJL_BGR 3 BGR, BGR, … 1:1:1 CC Yes &

US No

4:1:1 CC Yes &

US Yes

4:2:2 CC Yes &

US Yes

IJL_YCBCR 3 IJL_RGBA_

FPX

4 RGBO, RGBO, … 1:1:1 CC Yes &

US No

4:1:1 CC Yes &

US Yes

4:2:2 CC Yes &

US Yes

IJL_YCBCRA_

FPX

4 IJL_RGBA_

FPX

4 RGBA, RGBA, …

(see note 3

below)

1:1:1:1 CC Yes &

US No

4:1:1:4 C Yes &

US Yes

4:2:2:4 C Yes &

US Yes

IJL_OTHER n IJL_OTHER 1<=m<n X0..X(m-1),

X0..X(m-1),

…

CC No & US if

needed

IJL_OTHER n IJL_OTHER m = n X0..X(n-1),

X0..X(n-1),

…

CC No & US if

needed

IJL_OTHER n IJL_OTHER m > n X0..X(n-

1)En..E(m-1),

X0..X(n-

1)En..E(m-1),

…

CC No & US if

needed

Pre- and Post-Processing

6-9

6
Supporting Legend:

Symbol Description

Y Luminance channel

Cb Cr chrominance channel (covering the red to blue-
green range)

Cr Cb chrominance channel (covering the blue to
yellow range)

R Red channel

G Green channel

B Blue channel

E Empty value (i.e., the existing memory contents
are not overwtitten)

O Opaque value (i.e., for 8-bit samples, it equals
255)

X Any arbitrary channel value

CC Color Space Conversion

US Upsample

SS Subsample

Supporting Notes:

1. Note, this is exactly the same as the IJL_ G to IJL_RG B case.
2. Pursuant to the FlashPix specification, the pre-multiplied opacity is

preserved.
3. Pursuant to the FlashPix specification, an "inverse flip" (that is,

X = 255 – X') is performed and the pre-multiplied opacity is
preserved.

4. Starting from version 1.5, the IJL supports IJL_YCBC R DIB color
space (currently for DIBSubsamplin g = IJL_42 2 only). Decoding is
implemented only for JPGSubsamplin g = IJL_422.

Intel® JPEG Library Developer’s Guide

6-10

6
Encoding and Pre-Processing Matrix

The following table illustrates permitted color space encoding
combinations and pre-processing options in the IJL.

Table 6-3 IJL Encoding and Pre-Processing Matrix

DIB

Color Space

DIB

Channels

JPEG

Color Space

JPEG

Channels

Format

of Encoded

Data Pre-Processing

IJL_G 1 IJL_G 1 Y, Y, … CC No & SS No

IJL_G 1 IJL_YCBCR 3 Y00, Y00, …

(see note 1

below)

1:1:1 CC No & SS

No

4:1:1 CC No & SS

Yes

4:2:2 CC No & SS

Yes

IJL_RGB 3 IJL_G 1 Y, Y, … CC Yes & SS No

IJL_RGB 3 IJL_RGB 3 RGB, RGB, … 1:1:1 CC No & SS

No

4:1:1 CC No & SS

Yes

4:2:2 CC No & SS

Yes

continued

Pre- and Post-Processing

6-11

6
Table 6-3 IJL Encoding and Pre-Processing Matrix (continued)

DIB

Color Space

DIB

Channels

JPEG

Color Space

JPEG

Channels

Format

of Encoded

Data Pre-Processing

IJL_RGB 3 IJL_YCBCR 3 YCbCr,

YCbCr, …

1:1:1 CC Yes &

SS No

4:1:1 CC Yes &

SS Yes

4:2:2 CC Yes &

SS Yes

IJL_RGB 4 IJL_YCBCR 3 YCbCr,

YCbCr, …

(see note 2

below)

1:1:1 CC Yes &

SS No

4:1:1 CC Yes &

SS Yes

4:2:2 CC Yes &

SS Yes

IJL_BGR 3 IJL_G 1 Y, Y, … CC Yes & SS No

IJL_BGR 3 IJL_RGB 3 RGB, RGB, … 1:1:1 CC No & SS

No

4:1:1 CC No & SS

Yes

4:2:2 CC No & SS

Yes

IJL_BGR 3 IJL_YCBCR 3 YCbCr,

YCbCr, …

1:1:1 CC Yes &

SS No

4:1:1 CC Yes &

SS Yes

4:2:2 CC Yes &

SS Yes

IJL_YCBCR 3 IJL_YCBCR 3 YCbCr,

YCbCr, …

(see note 5

below)

4:2:2 CC No &

SS Yes

continued

Intel® JPEG Library Developer’s Guide

6-12

6
Table 6-3 IJL Encoding and Pre-Processing Matrix (continued)

DIB

Color Space

DIB

Channels

JPEG

Color Space

JPEG

Channels

Format

of Encoded

Data Pre-Processing

IJL_RGBA_FPX 4 IJL_RGBA_FPX 4 RGBA, RGBA,

…

(see note 3

below)

1:1:1:1 CC No &

SS No

4:1:1:4 CC No &

SS Yes

4:2:2:4 CC No &

SS Yes

IJL_RGBA_FPX 4 IJL_YCBCRA_FPX 4 YCbCrA,

YCbCrA, …

(see note 4

below)

1:1:1:1 CC Yes &

SS No

4:1:1:4 CC Yes &

SS Yes

4:2:2:4 CC Yes &

SS Yes

IJL_OTHER n IJL_OTHER 1<=m<n X0..X(m-1),

X0..X(m-1),

…

CC No & SS if

needed

IJL_OTHER n IJL_OTHER m = n X0..X(n-1),

X0..X(n-1),

…

CC No & SS if

needed

Pre- and Post-Processing

6-13

6
Supporting Legend:

Symbol Description

Y Luminance channel

Cb Cr chrominance channel (covering the red to blue-
green range)

Cr Cb chrominance channel (covering the blue to
yellow range)

R Red channel

G Green channel

B Blue channel

E Empty value (i.e., the existing memory contents
are not overwtitten)

O Opaque value (i.e., for 8-bit samples, it equals
255)

X Any arbitrary channel value

CC Color Space Conversion

US Upsample

SS Subsample

Supporting Notes:

1. The luminance values are retained and the chrominance values are set
to zero.

2. Assumes no pre-multiplied opacity.
3. Pursuant to the FlashPix specification, the pre-multiplied opacity is

preserved.
4. Pursuant to the FlashPix specification, a "flip" (i.e., X' = 255 - X) is

performed and the pre-multiplied opacity is preserved.
5. The data encoding fromDIBColor = IJL_YCBCR to

JPGColor = IJL_YCBCR is currently supported only for
DIBSubsampling = IJL_422 .

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Advanced IJL Features

7-1

7
This section describes some advanced features and imaging techniques that
are possible with the IJL.

Use of Processor-Specific Code

The IJL detects the processor type and chooses the best available
processor-specific code automatically (this is the default option). For
example, if you use IJL on a system with Intel® Pentium® 4 processor, the
library will take advantage of the code that has been specially optimized
for that processor type.
However, you can direct the library to use the required code version by
setting the USECPU key in the system registry to one of the following
values:

0 - Blended code must be used (option for all legacy processors)
4 - Code optimized for Pentium II processor must be used
5 - Code optimized for PentiumIII processor must be used
6 - Code optimized for Pentium 4 processor must be used

The USECPU key has the type DWORD and must be located at
HKEY_LOCAL_MACHINE\Software\Intel Corporation\PLSuite\IJLib.

Setting the DCT Algorithm

The IJL supports two different DCT algorithms. The first one, set by
IJL_AAN field value, is based on the work of Arai et al., see [Arai]. This
algorithm is quite fast but has limited accuracy.

The second algorithm, which provides sufficient speed and higher
accuracy, was derived from the Intel Integrated Performance Primitives for

Intel® JPEG Library Developer’s Guide

7-2

7
Intel architecture. This is a default option, set after a call toijlInit() .
To use the previous version of the DCT algorithm, set the
jcprops.jprops.dcttype field in JPEG_CORE_PROPERTIESstructure to
IJL_AAN . This setting must be done after callingijlInit() , but prior to
first call to ijlRead() or ijlWrite() .

Writing and Reading of JPEG Comment Block

Two new fields in theJPEG_CORE_PROPERTIESstructure have been
introduced:jpeg_comment is the pointer to a comment string, and
jpeg_comment_size is the length in bytes of the comment string,
including trailing zero. When IJL initialization takes place, these fields are
set to 0. It means that the following predefined comment string will be
inserted by the IJL while encoding data: “Intel® JPEG Library,
[<version>]”. If you need to insert your own comment for encoded data
instead, set the pointer to the comment string and specify the length of the
string. Similarly, to extract the comment from JPEG data while decoding,
you should set the pointer to the comment buffer and specify the buffer
size. If the comment string was successfully read and placed into the
buffer, this field will be set to the number of bytes written into the buffer.
In case the buffer has insufficient size, the IJL will write data until the
buffer is full, and then return the error codeIJL_ERR_COM_BUFFER.
If no comment string is present in JPEG data, the IJL will not change either
buffer contents or the buffer size field.
The application program must both allocate and free memory for the
comment string buffer.

Custom JPEG Tables

The IJL allows user-specified Huffman and quantization tables for specific
authoring requirements. These tables are specified via entries in the
JPEG_PROPERTIESdata structure.

Advanced IJL Features

7-3

7
Custom Quantization Tables

The IJL can accept up to four custom quantization tables for authoring
JPEG images. Quantization tables are specified in the IJL as an 8x8 array
of 8-bit unsigned char entries in normal row-major, or non-zig-zagged,
form. By default, the standard quantization tables are used in the IJL JPEG
encoding procedures and are described as follows:

static unsigned char DefaultLuminanceQuantTbl[] =
{

16, 11, 12, 14, 12, 10, 16, 14,
13, 14, 18, 17, 16, 19, 24, 40,
26, 24, 22, 22, 24, 49, 35, 37,
29, 40, 58, 51, 61, 60, 57, 51,
56, 55, 64, 72, 92, 78, 64, 68,
87, 69, 55, 56, 80, 109, 81, 87,
95, 98, 103, 104, 103, 62, 77, 113,

121, 112, 100, 120, 92, 101, 103, 99
};
static unsigned char DefaultChrominanceQuantTbl[] =
{

17, 18, 18, 24, 21, 24, 47, 26,
26, 47, 99, 66, 56, 66, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99

};

Each quantization factor is adjusted within IJL by a quality level multiplier
and used to divide the input data to reduce its precision (and hence its
storage size). The entries in the quantization arrays correspond to
multipliers applied to certain spatial frequencies within the image. The
lowest-order (DC) component is located in the upper-left hand corner.

The following code illustrates adding custom quantization tables prior to
authoring a JPEG image.

Intel® JPEG Library Developer’s Guide

7-4

7
//--
// An example using the IntelR JPEG Library:
// -- Author a JPEG image using custom quantization tables.
//--

// Your special quantization table goes here!
static BYTE HQLumQuantTable[] =
{

16, 11, 12, 14, 12, 10, 16, 14,
13, 14, 18, 17, 16, 19, 24, 40,
26, 24, 22, 22, 24, 49, 35, 37,
29, 40, 58, 51, 61, 60, 57, 51,
56, 55, 64, 72, 92, 78, 64, 68,
87, 69, 55, 56, 80, 109, 81, 87,
95, 98, 103, 104, 103, 62, 77, 113,

121, 112, 100, 120, 92, 101, 103, 99
};

// Your special quantization table goes here!
static BYTE HQChromQuantTable[] =
{

17, 18, 18, 24, 21, 24, 47, 26,
26, 47, 99, 66, 56, 66, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99

};

BOOL EncodeJPGFileWithCustomQuantization(
LPCSTR lpszPathName,
DWORD width,
DWORD height,
DWORD nchannels,
BYTE* pixel_buf)

{
BOOL bres;
IJLERR jerr;

Advanced IJL Features

7-5

7
// Allocate the IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIESjcprops;

bres = TRUE;

__try
{

// Initialize the IntelR JPEG Library.
jerr = ijlInit (&jcprops);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

// Set the custom quantization tables. For this example we
// assign two custom tables, although up to four are possible.
// Here we also assume the tables specify luminance and
// chrominance quantization factors (as in a YCbCr image).
jcprops.jprops.maxquantindex = 2;
jcprops.jprops.nqtables = 2;
jcprops.jprops.rawquanttables[0].quantizer = HQLumQuantTable;
jcprops.jprops.rawquanttables[0].ident = 0;
jcprops.jprops.rawquanttables[1].quantizer = HQChromQuantTable;
jcprops.jprops.rawquanttables[1].ident = 1;

// Now that we have assigned the tables, we need to decide which
// color channels of the authored image will use which tables.
// The ident member of rawquanttables specifies a unique
// identifier for each table; we reference the quant_sel member of
// each frame (image) component to this identifier.
jcprops.jprops.jframe.comps[0].quant_sel = 0;
jcprops.jprops.jframe.comps[1].quant_sel = 1;
jcprops.jprops.jframe.comps[2].quant_sel = 1;
jcprops.jprops.jframe.comps[3].quant_sel = 1;

jcprops.DIBWidth = width;
jcprops.DIBHeight = height;
jcprops.DIBChannels = nchannels; // nchannels MUST BE 3!
jcprops.DIBColor = IJL_BGR;
jcprops.DIBBytes = pixel_buf;

Intel® JPEG Library Developer’s Guide

7-6

7
jcprops.JPGFile = const_cast<LPSTR>(lpszPathName);

// Specify JPEG file creation parameters.
jcprops.JPGWidth = width;
jcprops.JPGHeight = height;

// Note: the following are default values and thus
// do not need to be set.
// jcprops.JPGChannels = 3;
// jcprops.JPGColor = IJL_YCBCR;
// jcprops.JPGSubsampling = IJL_411; // 4:1:1 subsampling.
// jcprops.jquality = 75; // Select "good" image quality
// Write the actual JPEG image from the pixel buffer.
jerr = ijlWrite (&jcprops, IJL_JFILE_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

} // __try

__finally
{

// Clean up the IntelR JPEG Library.
ijlFree (&jcprops);

}

return bres;
} // EncodeJPGFileWithCustomQuantization()

The IJL formats the quantization tables for internal use before authoring
any data. Thus, the tables that are passed to the IJL only need to persist as
long as the first call toijlWrite() .

Advanced IJL Features

7-7

7
Custom Huffman Tables

The IJL accepts up to four sets of user-specified Huffman tables per
authored image. Huffman tables are used to determine the entropy codes
used in the run-length coding portion of the JPEG encoding process.

Huffman tables are specified in pairs: one table for each the DC and AC
frequency components in an image channel. Each Huffman table requires
two structures, one representing the bits required for each symbol, and one
with the actual symbol values. The data format within each of these
structures is identical to that of the embedded Huffman tables per the JPEG
specification.

The following code illustrates image authoring using custom Huffman
tables.

//--
// An example using the IntelR JPEG Library:
// -- Author a JPEG image using custom Huffman tables.
//--

// Your special Huffman DC Symbol Length table goes here!
static BYTE CustomLuminanceDCBits[] =
{

0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};

// Your special Huffman DC Symbol table goes here!
static BYTE CustomLuminanceDCValues[] =
{

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,
0x0b
};

// Your special Huffman DC Symbol Length table goes here!
static BYTE CustomChrominanceDCBits[] =
{

0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00

Intel® JPEG Library Developer’s Guide

7-8

7
};

// Your special Huffman DC Symbol table goes here!
static BYTE CustomChrominanceDCValues[] =
{

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,
0x0b
};

// Your special Huffman AC Symbol Length table goes here!
static BYTE CustomLuminanceACBits[] =
{

0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03,
0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7d

};

// Your special Huffman AC Symbol table goes here!
static BYTE CustomLuminanceACValues[] =
{

0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa

};

Advanced IJL Features

7-9

7
// Your special Huffman AC Symbol Length table goes here!
static unsigned char CustomChrominanceACBits[] =
{

0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04,
0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77

};

// Your special Huffman AC Symbol table goes here!
static unsigned char CustomChrominanceACValues[] =
{

0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa

};

BOOL EncodeJPGFileWithCustomHuffman(
LPCSTR lpszPathName,
DWORD width,
DWORD height,
DWORD nchannels,
BYTE* pixel_buf)

{
BOOL bres;

Intel® JPEG Library Developer’s Guide

7-10

7
IJLERR jerr;

// Allocate the IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIESjcprops;

bres = TRUE;

__try
{

// Initialize the IntelR JPEG Library.
jerr = ijlInit (&jcprops);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

// Set the custom Huffman tables. For this example, we
// assign two sets of custom tables, though up to four are
// possible. We also assume the tables specify luminance and
// chrominance Huffman factors (as in a YCbCr image).
jcprops.jprops.nhuffActables = 2;
jcprops.jprops.nhuffDctables = 2;
jcprops.jprops.maxhuffindex = 2;
jcprops.jprops.rawhufftables[0].bits = CustomLuminanceDCBits;
jcprops.jprops.rawhufftables[0].vals = CustomLuminanceDCValues;
jcprops.jprops.rawhufftables[0].hclass = 0;
jcprops.jprops.rawhufftables[0].ident = 0;
jcprops.jprops.rawhufftables[1].bits = CustomLuminanceACBits;
jcprops.jprops.rawhufftables[1].vals = CustomLuminanceACValues;
jcprops.jprops.rawhufftables[1].hclass = 1;
jcprops.jprops.rawhufftables[1].ident = 0;
jcprops.jprops.rawhufftables[2].bits = CustomChrominanceDCBits;
jcprops.jprops.rawhufftables[2].vals = CustomChrominanceDCValues;
jcprops.jprops.rawhufftables[2].hclass = 0;
jcprops.jprops.rawhufftables[2].ident = 1;
jcprops.jprops.rawhufftables[3].bits = CustomChrominanceACBits;
jcprops.jprops.rawhufftables[3].vals = CustomChrominanceACValues;
jcprops.jprops.rawhufftables[3].hclass = 1;
jcprops.jprops.rawhufftables[3].ident = 1;

// Now that we have assigned the tables, we need to decide which

Advanced IJL Features

7-11

7
// channels of the authored image will use which tables.
// The ident member of rawhufftables specifies a unique
// identifier for each table; we reference the HuffIdentifier
// member of each image (which applies to each component in
// increasing order) to this identifier.
jcprops.jprops.HuffIdentifierAC[0] = 0;
jcprops.jprops.HuffIdentifierDC[0] = 0;
jcprops.jprops.HuffIdentifierAC[1] = 1;
jcprops.jprops.HuffIdentifierDC[1] = 1;
jcprops.jprops.HuffIdentifierAC[2] = 1;
jcprops.jprops.HuffIdentifierDC[2] = 1;
jcprops.jprops.HuffIdentifierAC[3] = 1;
jcprops.jprops.HuffIdentifierDC[3] = 1;

jcprops.DIBWidth = width;
jcprops.DIBHeight = height;
jcprops.DIBChannels = nchannels; // only 3 is valid
jcprops.DIBColor = IJL_BGR;
jcprops.DIBBytes = pixel_buf;

// Specify JPEG file creation parameters.
jcprops.JPGWidth = width;
jcprops.JPGHeight = height;

jcprops.JPGFile = const_cast<LPSTR>(lpszPathName);

// Note: the following are default values and thus
// do not need to be set.
// jcprops.JPGChannels = 3;
// jcprops.JPGColor = IJL_YCBCR;
// jcprops.JPGSubsampling = IJL_411; // 4:1:1 subsampling.
// jcprops.jquality = 75; // Select "good" image quality
// Write the actual JPEG image from the pixel buffer.
jerr = ijlWrite (&jcprops, IJL_JFILE_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{

bres = FALSE;
__leave;

}

} // __try

Intel® JPEG Library Developer’s Guide

7-12

7
__finally
{

// Clean up the IntelR JPEG Library.
ijlFree (&jcprops);

}

return bres;
} // EncodeJPGFileWithCustomHuffman()

The IJL formats the Huffman tables for internal use before authoring any
data. Thus, the tables passed to the IJL only need to persist as long as the
first call to ijlWrite() .

Extended Baseline Decoding

This section describes techniques to persist formatted table information
across multiple IJL accesses to minimize table processing and memory
overhead.

Many image file formats separate the header, table, and entropy
information of a JPEG stream. Some tile based formats, like FlashPix, may
separate an image into tiles, each of which references JPEG tables stored
elsewhere in the file. Optimal decoding requires that the table information
is not processed for each tile in an image, rather the decoder formatted
tables should bepersisted. Persistence requires that after the Huffman
and/or quantization tables are decoded and formatted, their formatted
representation needs to be stored external to the IJL. Before an image is
decoded, the formatted tables are then copied back into the appropriate
locations within theJPEG_PROPERTIESstructure.

For more information please refer to the white paper titled“Using the IJL
with JPEG Compressed FlashPix Files”.

TheHUFFMAN_TABLEandQUANT_TABLEstructures contain Huffman and
quantization tables in the proper decoder format. These tables are located
within JPEG_PROPERTIESas specified in the following fragment:

Advanced IJL Features

7-13

7
//
/ / .. . a cod e fragmen t fro m th e JPEG_PROPERTIES dat a structur e ...
//

/ / Tables
DWORD nqtables;
DWORD maxquantindex;
DWORD nhuffActables;
DWORD nhuffDctables;
DWORD maxhuffindex;
QUANT_TABLE jFmtQuant[4];
HUFFMAN_TABLE jFmtAcHuffman[4];
HUFFMAN_TABLE jFmtDcHuffman[4];

short * jEncFmtQuant[4];
HUFFMAN_TABLE *jEncFmtAcHuffman[4];
HUFFMAN_TABLE *jEncFmtDcHuffman[4];

/ / Allo w user-define d tables.
DWORD use_default_htables;
DWORD use_default_qtables;
JPEGQuantTabl e rawquanttables[4];
JPEGHuffTabl e rawhufftables[8];
BYTE HuffIdentifierAC[4];
BYTE HuffIdentifierDC[4];

The important members for table persistence are jFmtQuant ,
jFmtAcHuffman , and jFmtDcHuffman . After decoding the tables using
IJL_JXXXX_READHEADER, copy them to your persisted storage.

Next, to decode a JPEG bit stream (which is at a minimum assumed to be
in the Abbreviated Format for compressed image data), the user copies the
formatted tables back into the JPEG_PROPERTIES members and calls
ijlRead () with IJL_JXXXX_READWHOLEIMAGE.

Copying the persisted tables to JPEG_PROPERTIES is typically much faster
than appending a table stream to the front of each JPEG data stream and
forcing the decoder to process and format the tables at every call.

References

[Ara i] Ara i, Agui, and Nakajima, Trans. IEICE, vol. E 71(11),
pp. 1095-1097, Nov. 1988.

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Glossary of Terms

A-1

A
For purposes of this document, the following definitions apply.

Abbreviated Format (for compressed image data)– This format is
identical to the Interchange Format, except that it may or may not include
all tables required for decoding. This format is intended for use within
applications where alternative mechanisms are available for supplying
some or all of the table specification data needed for decoding.

Abbreviated Format (for table specification data) – This format
contains only table specification data. It is a means by which the
application may install in the decoder the tables required to subsequently
reconstruct one or more images.

Baseline Mode– (a.k.a.sequential DCT-based mode) One of the four
main categories of image compression processes defined by JPEG. This
mode is the simplest DCT-based JPEG encoding and decoding process, and
represents a minimum capability that must be present in all DCT-based
JPEG decoders. Image components are compressed either individually or
in groups in a single scan. Here is a summary of its essential
characteristics:

• DCT-based process
• Source image: 8-bit samples within each component
• Sequential
• Huffman coding: 2 AC and 2 DC tables
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans

Bit Stream - A partially encoded or decoded sequence of bits comprising
an entropy-coded segment.

Intel® JPEG Library Developer’s Guide

A-2

A
Channel – (a.k.a.component) A single color component of an image. An
RGB image has 3 channels, a RGBA image has 4 channels, and a
Grayscale image has only 1 channel.

Compressed Data– Either compressed image data or table specification
data or both.

Compressed Image Data– A coded representation of an image as
specified by the JPEG specification.

Continuous-tone Image– An image whose components have more than
one bit per sample.

DCT – (Discrete Cosine Transform) A mathematical transformation using
cosine basis functions which converts a block of samples into a
corresponding array of basis function amplitudes.

DIB - (Device Independent Bitmap) A pixel buffer where the image data is
stored in a byte interleaved form, one byte (8-bits) per channel. The most
common type is the Windows 24-bit DIB.

Entropy Coding – A lossless procedure that converts a sequence of input
symbols into a sequence of bits such that the average number of bits per
symbol approaches the entropy of the input symbols.

Extended Baseline Mode- A sequential DCT-based encoding and
decoding process in which additional capabilities are added beyond the
Baseline mode. This mode extends the Baseline mode to a broader range of
applications. Here is a summary of its essential characteristics:

DCT-based process
Source image: 8-bit or 12-bit samples
Sequential or progressive
Huffman or arithmetic coding: 4 AC and 4 DC tables
Decoders shall process scans with 1, 2, 3, and 4 components
Interleaved and non-interleaved scans

Glossary of Terms

A-3

A
Grayscale Image– A continuous-tone image that has only one component.

Horizontal Sampling Factor – The relative number of horizontal data
units of a particular component with respect to the number of horizontal
data units in the other components.

Huffman Table – The set of variable length codes required in the Huffman
coding process.

Huffman Coding – An entropy coding procedure that assigns a variable
length code to each input symbol.

IJL - (Intel® JPEG Library) The IJL is a software library for application
developers that provides high performance JPEG encoding and decoding of
full color, and grayscale, still images. The IJL was developed to take
advantage of MMX™ technology if present.

Interchange Format – (a.k.a. JPEG Interchange Format or JIF) A JPEG
compressed image data bit stream that includes all tables that are required
by the decoder (i.e., Huffman and quantization tables).

Interleaved – The descriptive term applied to the repetitive multiplexing
of small groups of data units from each component in a scan in a specific
order.

JFIF - (JPEG File Interchange Format) A minimal file format which
enables JPEG bit streams to be exchanged between a wide variety of
platforms and applications. The JFIF is entirely compatible with the
standard JPEG Interchange Format.

JPEG - (Joint Photographic Experts Group) Usually refers to ISO DIS
10918-1 and 10918-2, “Digital compression and coding of continuous-tone
still images", the compression standard this group created.

Lossless– A descriptive term for encoding and decoding processes and
procedures in which the output of the decoding procedure(s) is identical to
the input to the encoding procedure(s).

Lossy– A descriptive term for encoding and decoding processes which are
not lossless.

Intel® JPEG Library Developer’s Guide

A-4

A
MCU - (Minimum Coded Unit) The minimal set of data written to a
compressed JPEG stream. The MCU is, for DCT-based JPEG coding
processes, a set of rectangular regions over several channels representing
the same pixel-based region. It is always a multiple of 8 pixels wide and
high. Subsampling various color components of an image generates MCUs
with dimensions greater than 8 x 8 pixels. For example, common 4:1:1
subsampled JPEG images have a 16 x 16 pixel MCU.

Non-Interleaved – The descriptive term applied to the data unit processing
sequence when the scan has only one component.

Pixel Buffer - A rectangular array of pixels with each pixel having the
same number of component values (color channels). The number of
components and the color space interpretation of the components are also
required.

Pre-Processing– The act of applying various operations to an image prior
to sending it to the JPEG encoder. These operations typically include color
space conversion and subsampling.

Post-Processing– The act of applying various operations to an image after
receiving it from the JPEG decoder. These operations typically include
upsampling and inverse color space conversion.

Progressive Mode– One of the four main categories of image
compression processes defined by JPEG. This mode is a DCT-based
coding process that is achieved by a sequence of scans, each of which
codes part of the quantized DCT coefficient information.

Quantization - A lossy procedure in which the DCT coefficients are
linearly scaled in order to achieve compression.

Quantization Table – The set of 64 integer values used to quantize the
DCT coefficients.

Restart Interval – The integer number of MCUs processed as an
independent sequence within a scan.

Glossary of Terms

A-5

A
ROI - (Rectangle-of-Interest) A particular rectangular region of the image
which can be specified by (top, left) and (bottom, right) pixel coordinates.
The ROI must be contained within the image, but may encompass the total
image.

Scan– A single pass through the data for one or more of the components in
an image.

Subsampling– (a.k.a. Downsampling) A procedure by which the spatial
resolution of an image is reduced.

Table Specification Data– The coded representation from which the
tables used in the encoder and decoder are generated.

Upsampling – A procedure by which the spatial resolution of an image is
increased.

Vertical Sampling Factor – The relative number of vertical data units of a
particular component with respect to the number of vertical data units in
the other components.

Zig-Zag Sequence– A specific sequential ordering of the DCT
coefficients from (approximately) lowest spatial frequency to highest.

This page is intentionally left blank. Needed for two-sided printing.

This page is intentionally left blank. Needed for two-sided printing.

Data Structure and
Type Definitions

B-1

B
For purposes of this document, the following definitions apply and are
meant to be consistent with the IJL header file (ijl.h). If there are
inconsistencies, the header file should always take precedence.

JPEG_CORE_PROPERTIES

/*D*
///
//
// Name: JPEG_CORE_PROPERTIES
//
// Purpose: This is the primary data structure between the IJL and
// the external user. It stores JPEG state information
// and controls the IJL. It is user-modifiable.
//
// See the Developer's Guide for details on appropriate usage.
//
// Context: Used by all low-level IJL routines to store
// pseudo-global information.
//
// Fields:
// UseJPEGPROPERTIES Set this flag != 0 if you wish to override
// the JPEG_CORE_PROPERTIES "IN" parameters with
// the JPEG_PROPERTIES parameters.
//
// DIBBytes IN: Pointer to buffer of uncompressed data.
// DIBWidth IN: Width of uncompressed data.
// DIBHeight IN: Height of uncompressed data.
// DIBPadBytes IN: Padding (in bytes) at end of each
// row in the uncompressed data.
// DIBChannels IN: Number of components in the
// uncompressed data.

Intel® JPEG Library Developer’s Guide

B-2

B
// DIBColor IN: Color space of uncompressed data.
// DIBSubsampling IN: Required to be IJL_NONE.
//
// JPGFile IN: Pointer to file based JPEG.
// JPGBytes IN: Pointer to buffer based JPEG.
// JPGSizeBytes IN: Max buffer size. Used with JPGBytes.
// OUT: Number of compressed bytes written.
// JPGWidth IN: Width of JPEG image.
// OUT: After reading (except READHEADER).
// JPGHeight IN: Height of JPEG image.
// OUT: After reading (except READHEADER).
// JPGChannels IN: Number of components in JPEG image.
// OUT: After reading (except READHEADER).
// JPGColor IN: Color space of JPEG image.
// JPGSubsampling IN: Subsampling of JPEG image.
// OUT: After reading (except READHEADER).
// JPGThumbWidth OUT: JFIF embedded thumbnail width [0-255].
// JPGThumbHeight OUT: JFIF embedded thumbnail height [0-255].
//
// cconversion_reqd OUT: If color conversion done on decode,
// TRUE.
// upsampling_reqd OUT: If upsampling done on decode, TRUE.
// jquality IN: [0-100] where highest quality is 100.
//
// jprops "Low-Level" IJL data structure.
//
///
//
D/
struct JPEG_CORE_PROPERTIES
{

DWORD UseJPEGPROPERTIES; // default = 0

// DIB specific I/O data specifiers.
BYTE *DIBBytes; // default = NULL
DWORD DIBWidth; // default = 0
int DIBHeight; // default = 0
DWORD DIBPadBytes; // default = 0
DWORD DIBChannels; // default = 3
IJL_COLOR DIBColor; // default = IJL_BGR
IJL_DIBSUBSAMPLING DIBSubsampling; // default = IJL_NONE

Data Structure and Type Definitions

B-3

B
// JPEG specific I/O data specifiers.
char *JPGFile; // default = NULL
BYTE *JPGBytes; // default = NULL
DWORD JPGSizeBytes; // default = 0
DWORD JPGWidth; // default = 0
DWORD JPGHeight; // default = 0
DWORD JPGChannels; // default = 3
IJL_COLOR JPGColor; // default = IJL_YCBCR
IJL_JPGSUBSAMPLING JPGSubsampling; // default = IJL_411
DWORD JPGThumbWidth; // default = 0
DWORD JPGThumbHeight; // default = 0

// JPEG conversion properties.
DWORD cconversion_reqd; // default = TRUE
DWORD upsampling_reqd; // default = TRUE
DWORD jquality; // default = 75

// Low-level properties.
JPEG_PROPERTIES jprops;

};

Intel® JPEG Library Developer’s Guide

B-4

B
Supporting Type Definitions

#define IJL_NONE 0
#define IJL_OTHER 255

/*D*
///
//
// Name: IJLIOTYPE
//
// Purpose: Possible types of data read/write/other operations to be
// performed by the functions ijlRead and ijlWrite.
//
// See the Developer's Guide for details on appropriate usage.
//
// Fields:
//
// IJL_JFILE_XXXXXXX Indicates JPEG data in a stdio file.
//
// IJL_JBUFF_XXXXXXX Indicates JPEG data in an addressable buffer.
//
///
//
D/
typedef enum
{

IJL_SETUP = -1,

// Read JPEG parameters (i.e., height, width, channels,
// sampling, etc.) from a JPEG bit stream.
IJL_JFILE_READPARAMS = 0,
IJL_JBUFF_READPARAMS = 1,

// Read a JPEG Interchange Format image.
IJL_JFILE_READWHOLEIMAGE = 2,
IJL_JBUFF_READWHOLEIMAGE = 3,

// Read JPEG tables from a JPEG Abbreviated Format bit stream.
IJL_JFILE_READHEADER = 4,
IJL_JBUFF_READHEADER = 5,

Data Structure and Type Definitions

B-5

B
// Read image info from a JPEG Abbreviated Format bit stream.
IJL_JFILE_READENTROPY = 6,
IJL_JBUFF_READENTROPY = 7,

// Write an entire JFIF bit stream.
IJL_JFILE_WRITEWHOLEIMAGE = 8,
IJL_JBUFF_WRITEWHOLEIMAGE = 9,

// Write a JPEG Abbreviated Format bit stream.
IJL_JFILE_WRITEHEADER = 10,
IJL_JBUFF_WRITEHEADER = 11,

// Write image info to a JPEG Abbreviated Format bit stream.
IJL_JFILE_WRITEENTROPY = 12,
IJL_JBUFF_WRITEENTROPY = 13,

// Scaled Decoding Options:

// Reads a JPEG image scaled to 1/2 size.
IJL_JFILE_READONEHALF = 14,
IJL_JBUFF_READONEHALF = 15,

// Reads a JPEG image scaled to 1/4 size.
IJL_JFILE_READONEQUARTER = 16,
IJL_JBUFF_READONEQUARTER = 17,

// Reads a JPEG image scaled to 1/8 size.
IJL_JFILE_READONEEIGHTH = 18,
IJL_JBUFF_READONEEIGHTH = 19,

// Reads an embedded thumbnail from a JFIF bit stream.
IJL_JFILE_READTHUMBNAIL = 20,
IJL_JBUFF_READTHUMBNAIL = 21

} IJLIOTYPE;

/*D*
///
//

Intel® JPEG Library Developer’s Guide

B-6

B
// Name: IJL_COLOR
//
// Purpose: Possible color space formats.
//
// Note these formats do *not* necessarily denote
// the number of channels in the color space.
// There exists separate "channel" fields in the
// JPEG_CORE_PROPERTIES data structure specifically
// for indicating the number of channels in the
// JPEG and/or DIB color spaces.
//
// See the Developer's Guide for details on appropriate usage.
//
///
//
D/
typedef enum
{

IJL_RGB = 1, // Red-Green-Blue color space.
IJL_BGR = 2, // Reversed channel ordering from IJL_RGB.
IJL_YCBCR = 3, // Luminance-Chrominance color space as

// defined by CCIR Recommendation 601.
IJL_G = 4, // Grayscale color space.
IJL_RGBA_FPX = 5, // FlashPix RGB 4 channel color space that

// has pre-multiplied opacity.

IJL_YCBCRA_FPX = 6, // FlashPix YCbCr 4 channel color space that
// has pre-multiplied opacity.

// IJL_OTHER // Some other color space not defined by
// the IJL. This means no color space
// conversion will be done by the IJL.

} IJL_COLOR;

/*D*
///
//
// Name: IJL_JPGSUBSAMPLING
//
// Purpose: Possible subsampling formats used in the JPEG.

Data Structure and Type Definitions

B-7

B
//
// See the Developer's Guide for details on appropriate usage.
//
///
//
D/
typedef enum
{

IJL_411 = 1, // Valid on a JPEG w/ 3 channels.
IJL_422 = 2, // Valid on a JPEG w/ 3 channels.

IJL_4114 = 3, // Valid on a JPEG w/ 4 channels.
IJL_4224 = 4 // Valid on a JPEG w/ 4 channels.

// IJL_NONE // Corresponds to "No Subsampling".
// Valid on a JPEG w/ any number of channels.

// IJL_OTHER // Valid entry, but only used internally to
// the IJL.

} IJL_JPGSUBSAMPLING;

/*D*
///
//
// Name: IJL_DIBSUBSAMPLING
//
// Purpose: Possible subsampling formats used in the DIB.
//
// See the Developer's Guide for details on appropriate usage.
//
///
//
D/
typedef enum
{
// IJL_NONE = Corresponds to "No Subsampling".

} IJL_DIBSUBSAMPLING;

Intel® JPEG Library Developer’s Guide

B-8

B
Return Error Codes

/*D*
///
//
// Name: IJLERR
//
// Purpose: Listing of possible "error" codes returned by the IJL.
//
// See the Developer's Guide for details on appropriate usage.
//
// Context: Used for error checking.
//
///
//
D/
typedef enum
{

// The following "error" values indicate an "OK" condition.
IJL_OK = 0,
IJL_INTERRUPT_OK = 1,
IJL_ROI_OK = 2,

// The following "error" values indicate an error has occurred.
IJL_EXCEPTION_DETECTED = -1,
IJL_INVALID_ENCODER = -2,
IJL_UNSUPPORTED_SUBSAMPLING = -3,
IJL_UNSUPPORTED_BYTES_PER_PIXEL = -4,
IJL_MEMORY_ERROR = -5,
IJL_BAD_HUFFMAN_TABLE = -6,
IJL_BAD_QUANT_TABLE = -7,
IJL_INVALID_JPEG_PROPERTIES = -8,
IJL_ERR_FILECLOSE = -9,
IJL_INVALID_FILENAME = -10,
IJL_ERROR_EOF = -11,
IJL_PROG_NOT_SUPPORTED = -12,
IJL_ERR_NOT_JPEG = -13,
IJL_ERR_COMP = -14,
IJL_ERR_SOF = -15,
IJL_ERR_DNL = -16,
IJL_ERR_NO_HUF = -17,
IJL_ERR_NO_QUAN = -18,

Data Structure and Type Definitions

B-9

B
IJL_ERR_NO_FRAME = -19,
IJL_ERR_MULT_FRAME = -20,
IJL_ERR_DATA = -21,
IJL_ERR_NO_IMAGE = -22,
IJL_FILE_ERROR = -23,
IJL_INTERNAL_ERROR = -24,
IJL_BAD_RST_MARKER = -25,
IJL_THUMBNAIL_DIB_TOO_SMALL = -26,
IJL_THUMBNAIL_DIB_WRONG_COLOR = -27,
IJL_BUFFER_TOO_SMALL = -28,
IJL_UNSUPPORTED_FRAME = -29,
IJL_ERR_COM_BUFFER = -30,
IJL_RESERVED = -99

} IJLERR;

Intel® JPEG Library Developer’s Guide

B-10

B
IJLibVersion Structure

/*D*

///

// Name: IJLibVersion

//

// Purpose: Stores library version info.

//

// Context:

//

// Example:

// major - 1

// minor - 0

// build - 1

// Name - "ijl10.dll"

// Version - "1.0.1 Beta1"

// InternalVersion - "1.0.1.1"

// BuildDate - "Sep 22 1998"

// CallConv - "DLL"

//

//

D/

typedef struct _IJLibVersion

{

int major;

int minor;

int build;

LPCSTR Name;

LPCSTR Version;

LPCSTR InternalVersion;

LPCSTR BuildDate;

LPCSTR CallConv;

} IJLibVersion;

Frequently Asked
Questions

C-1

C
Q: I have a top-to-bottom image. Can IJL handle this type of DIBs?

A: Yes, the IJL supports both top-down and bottom-up image orientations
for encoding. If an image file has bottom-up orientation, you need just to
specify a negative value for theDIBHeight field in the
JPEG_CORE_PROPERTIESstructure. Note that JPEG data format defines
only the top-down image orientation; thus, theJPGHeight field must
always contain a positive value.

Q: Does IJL have a resize capability (I have a 600x400 DIB and I want to
write a 300x200 JPEG image)?

A: The IJL supports scaled decoding mode to decode an image at 1/2, 1/4,
or 1/8 of initial size. There is no provision in IJL for resizing an image
while encoding. You can useIntel® Image Processing Libraryto resize a
source image.

Q: I would like to use the DC and AC coefficients to check similarity of
two JPEG images. Is it possible to retrieve the coefficients with the IJL?

A: The IJL does not currently support raw DCT coefficients retrieval.

Q: Can you provide any information on a new version of your JPEG library
that will support scanline based encoding? For our company’s applications,
having access to the entire bitmap for encoding is impractical. In some
cases, our software deals with images that are hundreds of megabytes.

A: You can use interrupted encoding and decoding capability, which is
supported by the IJL. See code examples in this manual,Decoding an
Image Row by Row, andEncoding by One MCU at a Time.

http://developer.intel.com/vtune/perflibst

	Intel JPEG Library Developer's Guide
	How to Use This Guide
	Revision History
	Legal Information
	Contents
	1. Overview
	Nature of Product
	Minimum Requirements
	What’s New in IJL
	Technical Support and Feedback

	2. Programming Considerations
	Dynamic Link Library
	Import Library
	Header File
	Steps for Creating an IJL Application

	3. Architecture Description
	Supported I/O Data Structures
	Supported Data Formats
	JPEG Properties Data Storage
	Multi-Threading Support

	4. Interface Specifications
	5. Inside the Library
	Initialization
	Clean-up
	Reading Data
	Writing Data
	Opening a JPEG Image
	Creating a JPEG Image
	Interrupted Encoding and Decoding
	Rectangle-of-Interest Decoding
	Scaled Decoding
	Embedded Thumbnail Decoding
	Progressive Image Support
	Accessing JPEG Images From a Buffer
	Odd Data Formats

	6. Pre- and Post- Processing
	DIBs
	IJL Color Spaces
	Subsampling
	Upsampling
	Decoding and Post-Processing Matrix
	Encoding and Pre-Processing Matrix

	7. Advanced IJL Features
	Use of Processor-Specific Code
	Setting the DCT Algorithm
	Writing and Reading of JPEG Comment Block
	Custom JPEG Tables
	Custom Quantization Tables
	Custom Huffman Tables
	Extended Baseline Decoding

	Appendix A Glossary of Terms
	Appendix B Data Structure and Type Definitions
	JPEG_CORE_PROPERTIES
	Supporting Type Definitions
	Return Error Codes
	IJLibVersion Structure

	Appendix C Frequently Asked Questions

