Intel®
JPEG Library

Developets Guide

Copyright © 1998-2000, Intel Corporation
All Rights Reserved

Issued in U.S.A.

Document number 726916-004

]
-

=

g
i

T
=[]

1 1]
.
non

[l

bl |

How to Use This Online Manual

Click to hide or show subtopics when the F Click to go to the previous page.
bookmarks are shown.

Double-click to jump to a topic when the b Click to go to the next page.

bookmarks are shown.

Click to display bookmarks. M Click to go to the last page.

Click to display thumbnails. Click to return back to the previous view.

*‘ Use this button when you need to go back
after using the jump button (see below).

Click to close bookmark or thumbnail Click to go forward from the previous
view. view.

w
w

Click and use on the page to drag the
page in vertical direction.

Click to set 100% of the page view.

Click and drag to the page to magnify the
view.

Click to display the entire page within the
window.

|||

Click and drag to the page to reduce the Click to fill the width of the window.

view.

Click and drag the selection cursor to the
page.

Click to open a dialog to search for a word
or multiple words.

Click to go to the first page of the manual. Click jump button on manual pages to

jump to the related subjects. Use the

v | &

return back icon above to go back.

Printing an Online File. Select Print from the File menu to print an online file. The dialog that opens
allows you to print full text, range of pages, or selection.

Viewing Multiple Online Manuals. Select Open from the File menu, and open a .PDF file you need.
Select Cascade from the Window menu to view multiple files.

Resizing the Bookmark Area. Drag the double-headed arrow that appears on the area’s border as
you pass over it.

Jumping to Topics. Throughout the text of this manual, you can jump to different topics by clicking on
keywords printed in blue color, underlined style or on page numbers in a box.

To return to the page from which you jumped, use the icon in the tool bar. Try this example:
This software s briefly described in the Overview; see page[1-1]
If you click on the phrase printed in blue color, underlined style, or on the page number, the Overview

opens.

Intel* JPEG Library
Developeis Guide

Document number: 726916-004

World Wide Web: http://developer.intel.com

Revision
-001
-002
-003
-004

Revisio n History

First release.

Added the functions ijiGetLibVersion and ijlErrorStr
Added new code examples

Documents the Intel® JPEG Library version 1.5

Date

09/98
01/99
07/99
07/00

http://developer.intel.com/vtune/perflibst

This manual as well as the software described in it is furnished under license and may only be used or
copied in accordance with the terms of the license. The information in this manual is furnished for
informational use only, is subject to change without notice, and should not be construed as a commitment by
Intel Corporation.

Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by
such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means without the express written consent of Intel Corporation.

Information in this document is provided in connection with Intel® products. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided
in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent,
copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or
life sustaining applications. Intel may make changes to specifications and product descriptions at any time,
without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved"
or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them.

Processors may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Intel, the Intel logo, and Pentium are registered trademarks, and MMX is a trademark of Intel Corporation.
*Third-party marks and brands are the property of their respective owners.

Copyright 1998 - 2000, Intel Corporation. All Rights Reserved.

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4
Chapter 5

Overview

Nature of Product............ooooiiiiiiiiiiii e
Minimum RequUIremMentsveeeiiieeeeiceeecec e
What's New in IJL ..o
Technical Support and Feedback.............ccccooeeiiiiieiiiinnnnnn,

Programmin g Considerations

Dynamic Link Library ...,
IMPOrt LIDrary........cooouuiiiiiieeee e
Header File ...
Steps for Creating an IJL Applicationccccceeeeeeeeene,

Architectur e Description

Supported /O Data StruCturesccceeevveeeeeeveeeiiiccee e,
Supported Data FOrmats............cccoeemmmiimiiiiiiiiiiiiiiiniieieeees
JPEG Properties Data Storageccccoeeveeevvveiiiiiniieeeeeenns
Multi-Threading SUPPOIT........cccciiiiiiiiiiiieeeeeeee e

Interfac e Specifications

Insid e the Library

INItTIAlIZATION ...
(1= 1o LU o P
Reading Data...........uuuuiiiiieeeiiiieeeec e
WIHEING DAL ...uvieiii e
Opening @ JIPEG IMageooiii e
Creating a JPEG IMageccceeiiiiiiiieeci e
Interrupted Encoding and Decoding.............evvvveveveveveennnnns
Rectangle-of-Interest Decoding.............cevvveeiiiiiieeeeiiieiinnns
Scaled DECOUINGo
Embedded Thumbnail Decodingccccceeiiiiiiiieeiiiiiiinnn,

Intel® JPEG Library Developer’'s Guide

Progressive Image SUppPOrt........cccceeeeeeiiieieeeeee
Accessing JPEG Images From a Buffer
Odd Data FOrMALS.........cevviieiiiiiiiiiiiiiieiiiiiiieieiiiiviieeeeeeniaeeees

Chapter 6 Pre- and Post-Processing

IJL COlOr SPACES....uiiiiiiiiiieiii e
SUBSAMPIING .o
UPSAMPIING ..o
Decoding and Post-Processing Matrix............ccooeeeeeiinnnnnne
Encoding and Pre-Processing MatriXcceevveevvvvinnnnnnn.

Chapter 7 Advanced IJL Features
Use of Processor-Specific Codeccooceviiiiiiiiinnnn.
Setting the DCT Algorithm............ooooii,
Writing and Reading of JPEG Comment Block...................
Custom JPEG Tables........coooiiiiiieiieeeeeeee e
Custom Quantization Tablesccccveiveiiiiiiiiiiie e
Custom Huffman Tables..........cooooiiiiiiii e,
Extended Baseline Decodingccceveeeiiiiiieeeiieeeiiiiiiinns

Appendix A Glossary of Terms

Appendix B Data Structure and Type Definitions
JPEG_CORE_PROPERTIES.......ccvviiieeiiiiiiiiieeee e,
Supporting Type Definitions ...,
Return Error COAesSoovvvviiiiiiiieeeeeeeeeeee e
[JLIbVErsion StruCture ...,

Appendix C Frequently Asked Questions

Figures
3-1 Top-Level Architecture of the Intel JPEG Library.......
3-2 The Intel JPEG Library Main Data Structure..............

4-1 The Intel JPEG Library Application Programming
11T = T

Overview

6-1 Windows 24-bit DIB Data Format................cooeeennnnee 6-1
Tables

5-1 Scaled Decoding Calculations...............coooeeeeeeeeeennn. 5-40

6-1 |JL Supported Color SpPacesccceeeeeeeeeevveeeeiiiiiinnnnn, 6-2

6-2 IJL Decoding and Post-Processing Matrix.................

6-3 |JL Encoding and Pre-Processing Matrix................... 6-10
Examples

Decoding a JPEG image from a JFIF file to a general

PIXel BUFEr ... b-7

Decoding a JPEG image from a JFIF file

tO WINAOWS DIB ..o 5-11]

Encoding a JFIF file from Windows DIBccccceeenee 5-15

Interrupted decodingcooviviiiiiiiiii e 5-18

Decoding image row DY rowcceevvevviiiiiiiieiiieiiiiieeeeee, 5-2

Encoding image by one MCU atatimeoeeevvvennnns 5-27

Decoding a JPEG image from a JFIF file using

the Rectangle-Of-Interest (ROI) methodccccveeeeeen. 5-3

Decoding a JPEG image from a JFIF file using

the scaled decoding methodcccceeiiiiii, 5-41

Decoding an image from a JFIF buffer 5-49

Encoding Windows DIB to a JPEG buffercc.oe. 5-52

Authoring a JPEG image using custom quantization tables|[7-4 |
Authoring a JPEG image using custom Huffman tables

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

Overview

This Developer’'s Guide describes the design and implementation of the
Intel® JPEG Library (1JL). Please use this guide in conjunction with the
source code for the Sample Application and with the other 1JL
documentation as a learning tool to familiarize yourself with the use of
the IJL.

This guide assumes that the reader has a working knowledge of the
software development process and the C/C++ programming language.
Some familiarity with digital imaging, software development for the
Microsoft* Windows* 95, 98 operating systems, and the Microsoft
Foundation Classes application framework may also be useful.

A note to the reader, the following appendices are located at the end of this
document for referenceAppendix A - Glossary of TermandAppendix B

- Data Structure and Type Definitiorfahich provides additional

information on IJL data structures, type definitions, and error codes).

Nature of Product

The IJL is a software library for application developers that provides high
performance JPEG encoding and decoding of full color, and grayscale,
continuous-tone still images.

The IJL was designed for use on Iritglrocessors-based systems and has
been tuned for high performance and efficient memory usage.
Additionally, the IJL was developed to take advantage of MMX
technology if present.

1-1

1

Intel® JPEG Library Developers Guide

1-2

The IJL provides an easy-to-ue programmiry interface without sacrificing
low-levd JPEG contrd to advanced developers The IJL also includes a
substantibamoun of functionality tha is not included in the ISO JPEG
standard This addel functionalily istypically necessarwhen working
with JPES images, ard includes pre-processigiand post-processing
optiors like samplirg ard color spa® conversions.

Minimu m Requirements

The IJL requires the presene of the Microsoft Windows 95, 98 or
Windows NT* operatimg system and uses the Win32* application
programmirg interface (API).

The 1JL was designé to run on at leag an Intel® Pentiun® processor.
A 32-bit compile isrequiral to creak a 32-bit IJL application.
Sinethe IJL isaDynamic Link Library (DLL), the programming
langua@ usal mug be able to produe an application capabé of
calling functions containe within aWin32 DLL.

What's New in IJL

The IJL versian 1.5 suppors the following new features:

Encodirg of progressie JPES images.

New DCT algorithm of highe accuracyderived from

Intel® Integratel Performane Primitives for Intel® architecture.
New samplirg algorithm with triangula filter,
IJL_TRIANGLE_FILTER , which gives bette quality results.

New input data forma for encodirg and output format for decoding,
which is4:2:2 subsampld pixel-interleave 1JL_YCBCR forma with
dalsequenesd asaY0-Cb0-Y1-Cr0-Y2-Cb1-Y3-Crl-..

Suppot of new instructiors for Pentium Ill processo(implemented
mainly in forward ard inverse DCT functions and some color
conversiom functions).

Writing and reading of JPES segmett tha contairs comments.

Overview

Technica | Suppor t and Feedback

Your feedbak on the |JL isvery importar to us. Wewill strive to provide
you with arswers or solutiors to ary problens you might encounter To
give your feedbackor to repot any problens with installatian or use,
plea® contac¢ one of the following:

Suppot Hotlines:

North American Hotline: 800-628-8686
InternationfHotline: 916-356-7599

Serd e-mal to developer_support@intel.com

1-3

mailto:developer_support@intel.com

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

Programmimg Considerations

There are three componerg necessarfor creatirg an 1JL application:
1. ThelJL dynamt link library (1JL15.DLL),

2. ThelJdL import library (13L15.LIB), and

3. TheldL headefile (IJL.H).

Dynami c Link Library

The dynamc link library (DLL) contairs the IJL functiors called by your
application during execution Digits after the nane indicate the current
library version.

Impor t Libr ary

Theimpott library islinked to your applicatian at compilation time and
relates the IJL function callsto actua entry pointsin the DLL.

Header File

The heade fil e contairs the 1JL function declaratios and provides data
structue definitions data type definitions ard errar codes.

Steps for Creatin g an IJL Application

1. Write your progran with the IJL function calls Usethe IJL functions
just asif they were definal in your program.

2. IncludethelJL headefile, 13L.H , in ead sour@ moduk tha callsan
IJL function.

2-1

Intel® JPEG Library Developers Guide

2-2

3. AddthelJL importt library, 13L15.LIB , to your project’s list of link

libraries.

4. Compile and link your applicatian as you would normally do to create

aWin32 application.

Architectue Description

The current JPEG standad (ISO DIS 10918-1) has 44 possibé JPEG
image compressin techniquesmary of which are application-specifi and
not usal by the majority of the JPES decoders Similarly, the IJL supports
only asubseof the possibke compressia techniques.

Today, the mod commony usal JPEG modes are the sequentibBDCT-
base Baselire and Extendel Baselire modes Both of thes are fully
supporte in the IJL for JPES encodirg and decoding The IJL versian 1.5
suppors al Progressie modes for JPEG encodirg ard decoding Thereis
currently no provision for restat intervak in Progressie encodirg mode.

Supporte d I/O Data Structures

The IJL architectue (see Figure 3-1) performns bast input from, ard output
to, thes data structures:

1. A generd pixel buffer in memay.
2. A standad I/O fil e tha contairs a JPEG bit stream.
3. A memoy buffer tha contairs a JPEG bit stream.

3-1

Intel” JPEG Library Developer's Guide

Figure 3-1 Top-Level Architecture of the Intel ® JPEG Library

Read JPEG

Pixel

JFIF
Buffer User SW

Buffer JFIF File
(ipg)

JPEG Properties

Write JPEG

Architecture Description

Supported Data Formats

Additionally, the 1JL supports the following data formats:

¢ Top-down or bottom-up pixel buffers.

« Pixel buffers with user-defined end-of-line padding.

¢ Access to a rectangle-of-interest within a general pixel buffer.

« Decoding from a rectangle-of-interest within a larger JPEG image.

¢ JPEG File Interchange Format (JFIF) encoding and decoding.
IJL provides decoding of JFIF files compliant with JFIF
specification versions 1.01 and 1.02. Encoding is done as per JFIF
version 1.01. IJL also supports decoding of embedded uncompressed
thumbnails stored using 1 or 3 bytes/pixel as compliant with JFIF
specification versions 1.01 and 1.02. Thumbnails compressed using
JPEG are not supported at this time.

Data (sample) values must be 8-bits precision per color channel.

JPEG Properties Data Storage

The IJL’s “JPEG Properties” data storage contains global and image-
specific JPEG information. Control structures within this storage
determine /O specific processing options, such as subsampling and color
conversion requirements.

The IJL uses thePEG_CORE_PROPERTIEdata structure for storing the
JPEG properties data. This structure can be described as having two
separate parts. The first part consists of a set of fields encapsulating
common library parameters, and the other part consists of a low-level
embedded structure (sé@ure 3-2and/orAppendix B - Data Structure

and Type Definitions

Users must follow two main rules abolREG_CORE_PROPERTIES

1. The user must always provide (allocate) thREG_CORE_PROPERTIES
data structure.

2. The sam@PEG_CORE_PROPERTIEdata structure may be reused for a
series of JPEG encodings and/or decodings when initialized and
cleaned up properly.

3-3

Intel” JPEG Library Developer's Guide

Figure 3-2 The Intel ® JPEG Library Main Data Structure

JPEG_CORE_PROPERTIES

I/O Fields

JPEG_PROPERTIES

Low-Level I/O Fields

Other Low-Level Fields
(FRAME, SCAN, and
COMPONENT structures)

Huffman Tables

Quantization Tables

Temp Storage

JPEG_PROPERTIESS the low-level data structure and it contains a copy of
each of the fields found inside of theEG_CORE_PROPERTIERigh-level
data structure plus some additional fields. The IJL us€ss_PROPERTIES

34

Architecture Description

internally, notJPEG_CORE_PROPERTIESO this structure isolates the
internal variables from the external.

For advanced users, theeG_PROPERTIES]ata structure may be used for
extended interface behavior. For example, the user may want to write user-
defined Huffman tables and/or quantization tables directly to
JPEG_PROPERTIES0 override the default tables (s€bdapter 7, Advanced

IJL Featuresor more information).

Default values for the fields in both thi€EG_CORE_PROPERTIE&Nd
JPEG_PROPERTIESata structures are fully documented as in-line
comments inside of the header file.H .

Multi-Threading Support

The JPEG_CORE_PROPERTIEdata structure was designed to be local to a
single thread. There is no parameter “locking” that will allow multiple
threads to access the san®&EG_CORE_PROPERTIEStructure. However,

all implementation details of the IJL allow multiple
JPEG_CORE_PROPERTIEStorages and code access by multiple threads.

3-5

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

Interface Specifications

Figure 4-1

The IJL provides a simple C function interface ($egure 4-1.
It was modeled on a simple read/write stack built around the
JPEG_CORE_PROPERTIEdata structure.

There are functions to initialize and release the storage used inside of
JPEG_CORE_PROPERTIESAIso provided are functions designed to
transact data and/or parameters to, or from, the IJL.

IJL function calls return a descriptive error code upon a failure; otherwise,
a positive success codel(OK, IJL_INTERRUPT_OK, IJL_ROI_OK) is
returned. Seéppendix B - Data Structure and Type Definitidosfurther
details. To convert an error code to a string with the textual description of
the error, use the functiofErrorStr()

Finally, the functionjlGetLibVersion() returns the version number
and other information about the library.
Note that both thélErrorstr() andijiGetLibVersion() functions

return a pointer to a static variable, so the application has no need to free
the memory referenced by these pointers.

The Intel ® JPEG Library Application Programming Interface

/I Initialize the IJL.
IJLERR ijlinit (JPEG_CORE_PROPERTIES *jcprops);

/I Clean up the IJL.
IJLERR ijlFree (JPEG_CORE_PROPERTIES *jcprops) ;

/I Use the IJL to read data from a buffer or a file.
IJLERR ijlRead (JPEG_CORE_PROPERTIES *jcprops, IJLIOTYPE

iotype) ;

continued

4-1

Intel” JPEG Library Developer's Guide

4-2

Figure 4-1

The Intel JPEG Library Application Programming Interface
(continued)

/I Use the IJL to write data into a buffer or a file.

IJLERR ijlWrite (JPEG_CORE_PROPERTIES *jcprops, IJLIOTYPE
iotype) ;

/I Return the version number of the IJL.

const IJLibVersion* ijlGetLibVersion() ;

/I Return a pointer to a string with error description.
const char* ijIErrorStr(IJLERR code) ;

Inside the Library

This section describes the design and implementation of common features
of the IJL, as well as providing some working examples.

Initialization

Clean-up

The IJL must be initialized before it can be used by an application. This
occurs in thejlinit() function. This function should only be called
once per each allocation ofJ@EG_CORE_PROPERTIEdata structure.

In the event that an application wants to make multiple calls to either the
encode or decode functions, the application should include a call to
ijlinit() before either of the functions is invoked, and more precisely
the initialization needs to take place between each individual call to the
encode or decode functions. This allows IReG_CORE_PROPERTIEdata
structure to reset. Additionally, there must be a one-to-one correlation
between each initialization call and its counterpjamtee() the

cleanup function.

After an application has finished using the 1JL, the memory and other
system resources allocated by the 1JL should be released by calling the
ijIFree() function.

In the case of multiple encoding or decoding calls, as reviewed in the
previous section, thgrree() function should be called after the

encode or decode function has been completed. This behavior will insure
that resources will be properly cleaned up, and any values used by the 1JL
will not be corrupted.

Intel” JPEG Library Developer's Guide

5-2

Reading Data

ijlJRead (JPEG_CORE_PROPERTIES *jcprops, IJLIOTYPE iotype) is
one of two interface functions that access JPEG compressed data (the other
iS ijiwrite() which is discussed in the following section).

The second parameter indicates the JPEG data location (i.e., a file or a
buffer), the “mode of access”, and any scaling to be applied during the
decode process. The following tw@ IOTYPE naming conventions are
used:
1. 1JL_JBUFF_XXXX

(Indicating the JPEG data is stored in a memory buffer).
2. 1JL_JFILE_XXXX

(Indicating the JPEG data is located in a standard 1/O file).

When reading data, the mode of access mustteDPARAMREADHEADER
READENTRORREADWHOLEIMAGREADONEHALMREADONEQUARTER
READONEEIGHTHor READTHUMBNALL Each of these is described in the

tables below.
IJLIOTYPE Description
IJL_IXXXX_READPARAMS Indicates that JPEG parameters (i.e., height,

width, number of channels, subsampling) are
to be determined from the JPEG bit stream.

For example, the following markers are
parsed:

SOl | [tables/misc] like APPn and DQT |
SOF | [tables/misc] like DHT | stops at SOS

Note: bit stream must start with SOI marker.

continued

Inside the Library

IJLIOTYPE Description

IJL_JIXXXX_READHEADER Indicates the Abbreviated Format for table
specification data (i.e., Huffman tables,
quantization tables, miscellaneous marker
segments) is to be read.

For example, the following markers are
parsed:

SOl | [tables/misc] | EOI (or stops at SOF or
SOS)

Note: bit stream must start with SOI marker.

IJL_JIXXXX_READENTROPY Indicates the Abbreviated Format for
compressed image data is to be read.
Identical to READWHOLEIMAGE except
that the bit stream may or may not contain
table specification data.

For example, the following markers are
parsed:

SOl | [tables/misc] | SOF [tables/misc] like
DHT | SOS | EOI

Note: in this case only (READENTROPY),
APPO segments are skipped over.

IJL_IXXXX_READWHOLEIMAGE Indicates the Interchange Format for
compressed image data (i.e., the whole
JPEG bit stream) is to be read.

For example, the following markers are
parsed:

SOl | [tables/misc] like APPn and DQT |
SOF [tables/misc] like DHT | SOS | EOI

Typically, READPARAMIS used to determine the JPEG’s height and width
in order to allocate an output buffer or for viewing reasons. Then, to read
the remaining image dateREADWHOLEIMAGE READENTROPIs used.

5-3

Intel” JPEG Library Developer's Guide

READHEADE#B commonly called to parse the Abbreviated Format for table
specification data. It is subsequently paired VAREADENTROPtO obtain

the Abbreviated Format for compressed image data. The
READHEADHREADENTROPpair is an optimal solution to Abbreviated
Format JPEG decoding (i.e., for FlashPix* compressed images).

ThelJLIOTYPE may also be used to indicate a scaled read $eeded
Decodingfor more information). TheILIOTYPE enums for a scaled read
have the same behavior, and may be used in the same way, as a
READWHOLEIMAGE READENTRORYThe following scaled decoding
IJLIOTYPE ’s are defined:

IJLIOTYPE Description

IJL_IXXXX_READONEHALF Decodes the image scaled to % size.
For example, the following markers are
parsed:

(See READENTROPY).
IJL_IXXXX_READONEQUARTER Decodes the image scaled to % size.

For example, the following markers are
parsed:
(See READENTROPY).

IJL_IXXXX_READONEEIGHTH Decodes the image scaled to 1/8 size.

For example, the following markers are
parsed:
(See READENTROPY).

Inside the Library

Lastly, the 1IJLIOTYP E may be used to indicae an attempt to decode an
embeddd thumbnali (if presentin a JFIF bit strean (see Embelded
Thumbndi Decodirg for more information) 1JL_JXXXX_READTHUMBNAIL
may be used in the same way as IJL_JXXXX_READPARAMS

IJLIOTYPE Description

IJL_IXXXX_READTHUMBNAIL Attempts to decode an embedded
thumbnail (if present) in a JFIF bit stream.

For example, the following markers are
parsed:
(See READPARAMS).

When decodirg a JPES bit stream the following markers and their
correspondig segmergif applicable are nat processé by the IJL (i.e.,
they are skipped over)y APPn (except APPO and APP14) DAC,

DHP, DNL, EXP, JPGn, RES, SOFn (exaept SOFQ SOF1, and SOF2), and
TEM. Any SOFn maikers (except SOFO, SOF1, and SOF2) will cause the
IJL_UNSUPPORTED_FRME error.

Writing Data

ijlwrite (JPEG_CORE_PROPERTIS *, ILIOTYP E iotype) isthe
interface for writing dat to a JPEG bit stream.

Similar toijRead (), the secom paranete indicates the JPES data
location (i.e., afil e or abuffer) ard the “mode of access” However unlike
ijjRead (),thelJLIOTYP E parametecannd be usel to indicak scaled
writing or to autha embeddel JFIF thumbnails The following two
IJLIOTYP E namirg conventiors are used:
1. 1JL_JBUFF_XXXX

(Indicating the JPES compresseg datis storal in amemoy buffer).
2. 1JL_JFILE_XXXX

(Indicating the JPES dataislocated in astandad 1/0 file).

5-5

Intel” JPEG Library Developer's Guide

When writing data, the mode of access must\eTEHEADER
WRITEENTROPYOr WRITEWHOLEIMAGEEach is described in the following
table:

IJLIOTYPE Description

1IJL_IXXXX_WRITEHEADER Indicates an Abbreviated Format for
table specification data bit stream (i.e.,
Huffman tables, quantization tables,
miscellaneous marker segments) is to
be written.
The following markers are authored:
SOl | tables DQT and DHT | EOI

IJL_IXXXX_WRITEENTROPY Indicates an Abbreviated Format for
compressed image data bit stream is
to be written. Identical to
WRITEWHOLEIMAGE except that the
bit stream may or may not contain
table specification data.

The following markers are authored:
SOl | SOF | [DRI] | SOS | EOI

IJL_IXXXX_WRITEWHOLEIMAGE Indicates a JPEG File Interchange
Format (JFIF) for compressed image
data bit stream is to be written (i.e., an
entire JPEG using JFIF).

The following markers are authored:
SOl | tables/misc APPO, DQT, and
DHT | SOF | [DRI] | SOS | EOI

WRITEHEADERS typically called to write a bit stream in the Abbreviated
Format for table specification data. Also, it is usually paired with
WRITEENTROPWhich is designed to write a bit stream in the Abbreviated
Format for compressed image data. WheITEHEADERVRITEENTROPY

pair is an optimal solution to Abbreviated Format JPEG encoding (i.e., for
FlashPix compressed images).

When encoding data, the IJL writes the COM marker segment.

If the user comment is not specified, the default comment string

“Intel® JPEG Library, [<version>]" will be written.

Inside the Library

Opening a JPEG Image

Algorithm for “Normal Decoding of a JPEG Image™:
Allocate aJPEG_CORE_PROPERTIEdata structure.
Initialize the IJL.

Get the JPEG image dimensions, etc.

Set up display parameters and allocate output storage.
Get the JPEG image data.

6. Close down the IJL.

In the following code segment, the IJL is used to decode a JPEG image
from a JFIF file. Please refer ppendix B - Data Structure and Type
Definitionsfor additional details on IJL data structure definitions and
default values, data type definitions, and error codes.

ahrwdPE

I
/I An example using the IntelR JPEG Library:

/I -- Decode a JPEG image from a JFIF file to general pixel buffer.
I

BOOL DecodeJPGFileToGeneralBuffer(
LPCSTR IpszPathName,
DWORD* width,
DWORD* height,
DWORD* nchannels,
BYTE** buffer)

{
BOOL bres;
IJLERR jerr;
DWORD x = 0; /[pixels in scan line
DWORD y = 0; /[number of scan lines
DWORD c¢ = 0; /[number of channels

DWORD wholeimagesize;
BYTE* pixel_buf = NULL;

/I Allocate the 1IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIEg&props;

bres = TRUE;

5-7

Intel® JPEG Library Developer’s Guide

5-8

__try

e

/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);
if(IJL_OK != jerr)
{

bres = FALSE;

__leave;

}

/I Get information on the JPEG image
/I (i.e., width, height, and channels).
jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

jerr = ijlRead (&jcprops, L_JFILE_READPARAMS);
if(IJL_OK != jerr)
{

bres = FALSE;

__leave;

/I Set up local data.

jcprops.JPGWidth;

jcprops.JPGHeight;

3; /I Decode int 0 a 3 channel pixel buffer.

0O < X
I

/I Compute size of desired pixel buffer.
wholeimagesize = (x *y * ¢);

/I Allocate memory to hold the decompressed image data.
pixel_buf = new BYTE [wholeimagesize];
if(NULL == pixel_buf)
{
bres = FALSE;
__leave;

}

/I Set up the info on the desired DIB properties.
jcprops.DIBWidth

X

jcprops.DIBHeight = y; // Implies a bottom-up DIB.
jcprops.DIBChannels = c;
jcprops.DIBColor = IJL_BGR;

Inside the Library

jcprops.DIBPadBytes = 0;
jcprops.DIBBytes = pixel_buf;

I
I
I
1
1
1
I
I

Set the JPG color space ... this will always be
somewhat of an educated guess at best because JPEG
is "color blind" (i.e., nothing in the bit stream

tells you what color space the data was encoded from).
However, in this example we assume that we are
reading JFIF files which means that 3 channel images
are in the YCbCr color space and 1 channel images are
in the Y color space.

switch(jcprops.JPGChannels)

{
case 1:
{
jeprops.JPGColor = IJL_G;
break;
}
case 3:
{
jeprops.JPGColor = IJL_YCBCR,;
break;
}
default:
{
/I This catches everything else, but no
/I color twist will be performed by the IJL.
jeprops.DIBColor = (IJL_COLOR)IJL_OTHER,;
jcprops.JPGColor = (IJL_COLOR)IJL_OTHER,;
break;
}
}
/I Now get the actual JPEG image data into the pixel buffer.
jerr = ijlRead (&jcprops, IJL_JFILE_READWHOLEIMAGE);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}

5-9

Intel” JPEG Library Developer's Guide

5-10

Y Ity
_ finally

if(FALSE =
{
if(NULL
{

delete

= bres)
I= pixel_buf)

[pixel_buf;

pixel_buf = NULL;

}
}

/I Clean up the IntelR JPEG Library.
ijIFree (&jcprops);

*width
*height
*nchannels
*buffer

} /I _ finally

return bres;

= X’
= y7
= C’
= pixel_buf;

} /I DecodeJPGFileToGeneralBuffer()

Note that the code segment above decodes a JPEG image into a “general
pixel buffer” and thus no special allocation or alignment of the buffer is
required. As previously mentioned @hapter 3, Architecture Description
the IJL was designed to work with a general pixel buffer, and the user is
responsible for the allocation of the buffer to hold the pixel data. The IJL
in turn can write into, or read from, the buffer. The address of the buffer
gets passed to the 1JL through thi@Bytes field in the
JPEG_CORE_PROPERTIEStructure.

In the case that a user wants to decode into a Windows* DIB, the buffer
size calculation above could possibly return an incorrect size. If a user
wants to ensure the four (4) byte alignment of the buffer, as per the
definition of a Windows DIB, he should use the_DIB_PAD BYTES

macro included in th@.n header file. This macro definition is given by

#define 1JL_DIB_PAD_BYTES(width,nchannels) \

Inside the Library

(((width * nchannels) + (sizeof(DWORD) - 1)) & (
~(sizeof(DWORD) - 1)) - (width * nchannels))

The correspondingiBPadBytes value can be easily calculated as

jcprops.DIBPadBytes = IJL_DIB_PAD_BYTES(width,nchannels)

wherewidth is the image width in pixels, anadchannelss the number of
channels. The following code segment illustrates how to decode a JPEG
image to a Windows DIB.

I

/I An example using the IntelR JPEG Library:
/I -- Decode a JPEG image from a JFIF file to Windows DIB.

I

BOOL DecodeJPGFileToDIB(

LPCSTR

IpszPathName,

BITMAPINFOHEADER** dib)

{
BOOL

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
BYTE*

bres;

IJLERR jerr;

width;

height;
nchannels;
dib_line_width;
dib_pad_bytes;
wholeimagesize;

buffer = NULL;

BITMAPINFOHEADER* bmih = NULL;

/I Allocate the 1JL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIEg&props;

bres = TRUE;

_try
{

/I Initialize the IntelR JPEG Library.

jerr =

ijlinit (&jcprops);

if(IJL_OK != jerr)

5-11

Intel® JPEG Library Developer’s Guide

5-12

{
bres = FALSE;

__leave;

}

/I Get information on the JPEG image
/I (i.e., width, height, and channels).
jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

jerr = ijlRead (&jcprops,lJL_JFILE_READPARAMS);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}
/I Set up local data.
width = jcprops.JPGWidth;
height = jcprops.JPGHeight;
nchannels = 3; // Decode int 0 a 3 channel pixel buffer.

/I Compute DIB padding
dib_line_width = width * nchannels;
dib_pad_bytes = IJL_DIB_PAD_BYTES(width,nchannels);

/I Compute size of desired pixel buffer.
wholeimagesiz e = (dib_line_width + dib_pad_byte s) * height;

/I Allocate memory to hold the decompressed image data.
buffer = new BYTE [sizeof(BITMAPINFOHEADER) + wholeimagesize];
if(NULL == buffer)
{
bres = FALSE;
__leave;

}

bmih = reinterpret_cast<BITMAPINFOHEADER*>(buffer);

bmih->biSize = sizeof(BITMAPINFOHEADER);
bmih->biWidth = width;

bmih->biHeight = height;

bmih->biPlanes = 1,

Inside the Library

bmih->biBitCount = 24;
bmih->biCompression = BI_RGB;
bmih->biSizelmage = 0;

bmih->biXPelsPerMeter = O;
bmih->biYPelsPerMeter = 0
bmih->biClrUsed =
bmih->biClrimportant = 0;

1

Set up the info on the desired DIB properties.

jcprops.DIBWidth = width;

jcprops.DIBHeight = height; // Implies a bottom-up DIB.
jcprops.DIBChannels = nchannels;

jcprops.DIBColor = IJL_BGR;

jcprops.DIBPadBytes

dib_pad_bytes;

jcprops.DIBBytes = reinterpret_cast<BYTE*>(buffer +
sizeof(BITMAPINFOHEADER));

1
1
1
1
1
1
1
1

Set the JPG color space ... this will always be
somewhat of an educated guess at best because JPEG
is "color blind" (i.e., nothing in the bit stream

tells you what color space the data was encoded from).
However, in this example we assume that we are
reading JFIF files which means that 3 channel images
are in the YCbCr color space and 1 channel images are
in the Y color space.

switch(jcprops.JPGChannels)

{

case 1:

{
jeprops.JPGColor = IJL_G;
break;

}

case 3:

{
jeprops.JPGColor = IJL_YCBCR,;

break;

}

default:

5-13

Intel® JPEG Library Developer’s Guide

5-14

/I This catches everything else, but no

/I color twist will be performed by the IJL.

jeprops.DIBColor = (IJL_COLOR)IJL_OTHER,;
jeprops.JPGColor = (IJL_COLOR)IJL_OTHER;

break;
}
}
/I Now get the actual JPEG image data into the pixel buffer.
jerr = ijlRead (&jcprops,lJL_JFILE_READWHOLEIMAGE);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}
Y Ity
_ finally
if(FALSE == bres)
{
if(NULL != buffer)
{
delete [] buffer;
buffer = NULL;
}
}

/I Clean up the IntelR JPEG Library.
ijIFree (&jcprops);

*dib = bmih;
} /I __finally

return bres;
} /I DecodeJPGFileToDIB()

Inside the Library

Creating a JPEG Image

Algorithm for “Normal Encoding of a JPEG Image”:

1. Initialize the IJL.

2. Set up encoding parameters (if different than the default values).
3. Write image data to the IJL.

4. Close the 1JL.

The following code segment illustrates how to use the IJL to encode a JFIF
image from a pixel buffer. Please referAppendix B - Data Structure and
Type Definitiondor additional details on IJL data structure definitions and
default values, data type definitions, and error codes.

I
/I An example using the IntelR JPEG Library:
/I -- Encode a JFIF file from Windows DIB.

I

BOOL EncodeJPGFileFromDIB(
LPCSTR IpszPathName,
BITMAPINFOHEADER* bmih)

{

BOOL bres;
IJLERR jerr;
DWORD dib_pad_bytes;

/I Allocate the 1JL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIE&props;

bres = TRUE;

_try

{
/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);

if(IJL_OK != jerr)

5-15

Intel® JPEG Library Developer’s Guide

{
bres = FALSE;

__leave;

}

if(bmih->biBitCount != 24)

{
/I not supported palette images
bres = FALSE;
__leave;

}

dib_pad_bytes = IJL_DIB_PAD_BYTES(bmih->biWidth,3);

/I Set up information to write from the pixel buffer.

jcprops.DIBWidth = bmih->biWidth;

jcprops.DIBHeight = bmih->biHeight; // Implies a bottom-up DIB.

jcprops.DIBBytes = reinterpret_cast<BYTE*>(bmih) +
sizeof(BITMAPINFOHEADER);

jcprops.DIBPadBytes = dib_pad_bytes;

/I Note: the following are default values and thus

/I do not need to be set.

jcprops.DIBChannels = 3;

jcprops.DIBColor IJL_BGR,;

jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

/I Specify JPEG file creation parameters.
jcprops.JPGWidth = bmih->biWidth;
jcprops.JPGHeight = bmih->biHeight;

/I Note: the following are default values and thus
/I do not need to be set.

jcprops.JPGChannels = 3;

jcprops.JPGColor = IJL_YCBCR,;

jcprops.JPGSubsampling = 1JL_411; // 4:1:1 subsampling.
jcprops.jquality = 75; /I Select "good" image quality

/I Write the actual JPEG image from the pixel buffer.
jerr = ijlWrite (&jcprops,lJL_JFILE_ WRITEWHOLEIMAGE);

5-16

Inside the Library

ifIJL_O K !'= jerr)

{
bre s = FALSE;

__leave;

}

Y I try

__finally

{
/1 Clean up the Intel R JPEG Library.

ijIFree (&jcprops);
}

retur n bres;
} /1 EncodeJPGFileFromDIB()

Interrupte d Encodin g and Decoding

The IJL is capabé of interruptel encoding and decoding, and it may be
interruptel at ary time by assertig the “interrupt’ flag in the
JPEG_PROPERTIE daf structure.

The 1JL will retum with statis 1JL_INTERRUPT_OK after completing
processig on the currert Minimum Codel Unit (MCU). The encodirg or
decodirg proces may be resume at the sare location by simply calling
the appropriagijlRead () orijwrite () function Theusa may
determire the location of the lag decodd MCU viathelef t and top
entriesintheroi 1JL_REC T structue inside of JPEG_PROPERTIES

For example the following code segmem reads one MCU of JPES data
into a (previousy specified buffer, then it returrs ard repeas the process
until the entire image has bean decoded This function can be usel to
periodically susped the JPES encodirg or decoding process.

5-17

Intel® JPEG Library Developer’s Guide

I
/I An example using the IntelR JPEG Library:
/I -- Interrupted decoding.

I
/I In this example, we are doing full scale decoding.
/I It could also be any of the scaled decoding modes.

BOOL DecodeJPGFilelnterrupted(LPCSTR IpszPathName)
{

BOOL bres;

IJLERR jerr;

DWORD width;

DWORD height;

DWORD nchannels;

DWORD wholeimagesize;

BYTE* pixel_buf = NULL;

/I Allocate the 1L JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIE&props;

bres = TRUE;
_try
{
/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}

jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

/I Get information on the JPEG image
/I (i.e., width, height, and channels).
jerr = ijlRead (&jcprops, JL_JFILE_READPARAMS);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

}

5-18

Inside the Library

/I Set up local data.

width = jcprops.JPGWidth;
height = jcprops.JPGHeight;
nchannels = 3; // Decode int 0 a 3 channel pixel buffer.

/I Compute size of desired pixel buffer.
wholeimagesize = (width * height * nchannels);

/I Allocate memory to hold the decompressed image data.
pixel_buf = new BYTE [wholeimagesize];
if(NULL == pixel_buf)
{
bres = FALSE;
__leave;

}

/I Set up the info on the desired DIB properties.

jcprops.DIBWidth = width;

jcprops.DIBHeight = height; // Implies a bottom-up DIB.
jcprops.DIBChannels = nchannels;

jcprops.DIBColor = [JL_BGR;

jcprops.DIBPadBytes = 0;

jcprops.DIBBytes = pixel_buf;

/I Set the JPG color space ... this will always be
/I somewhat of an educated guess at best because JPEG
/[is "color blind" (i.e., nothing in the bit stream
/I tells you what color space the data was encoded from).
/I However, in this example we assume that we are
/I reading JFIF files which means that 3 channel images
/I are in the YCbCr color space and 1 channel images are
/I in the Y color space.
switch(jcprops.JPGChannels)
{
case 1:
{
jeprops.JPGColor = IJL_G;
break;

}

case 3:

5-19

Intel® JPEG Library Developer’s Guide

{
jcprops.JPGColor = IJL_YCBCR,;

break;

}

default:

/I This catches everything else, but no

/I color twist will be performed by the IJL.

jeprops.DIBColor = (IJL_COLOR)IJL_OTHER,;
jeprops.JPGColor = (IJL_COLOR)IJL_OTHER;
break;

/I Since the ROI values are updated following
/I an interrupt. We need to "reset" the ROI
/I values so that we continue to process over
/I the entire image.
jcprops.jprops.roi.left = 0;
jcprops.jprops.roi.right = 0;
jcprops.jprops.roi.top = 0;
jcprops.jprops.roi.bottom = 0;

jcprops.jprops.interrupt = TRUE;

jerr = ijlRead (&jcprops, IJL_JFILE_READENTROPY);
} while(IJL_INTERRUPT_OK == jerr);

1

/I ... now you probably want to do something with the
/I decompressed image like display it ...

1

Yty

__finally
{

5-20

Inside the Library

}

if(NUL L = pixel_buf)

{
delet e [] pixel_buf;

}

/1 Clean up the Intel R JPEG Library.
ijIFree (&jcprops);
}

retur n bres;
/| DecodeJPGFilelnterrupted()

I
11
11

An exampl e usin g th e Intel R JPEG Library:

-- Decode image row by row.

I

BOQ DecodeRowByRow(

{

LPCSTR IpszJpgName,
LPCSTR IpszBmpName)

int cnt;

int width;

int height;

int nchannels;

int bmp_pad;

int bmp_row_size;

int bmp_buf_size;

int current_row;

BOOL bres;

IJLERR jerr;

FILE* out_fil e = NULL;
BYTE* bmp_bit s = NULL;
BYTE* bmp_row = NULL;
BYTE* bmp_buf = NULL;

LPBITMAPFILEHEADER Ipbmf h = NULL;
LPBITMAPINFOHEADER Ipbmi h NULL;
IJL_RECT local_roi;
JPEG_CORE_PROPERTEE jcprops;

bre s = TRUE;

5-21

Intel® JPEG Library Developer’s Guide

__try

/I Initialize the Intel(R) JPEG Library.
jerr = ijlinit(&jcprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

}

jcprops.JPGFile = const_cast<LPSTR>(IpszJpgName);

/I Get information on the JPEG image (i.e., width, height, and
channels).

jerr = ijlRead(&jcprops, 1JL_JFILE_READPARAMS);

if(IJL_OK != jerr)

{

bres = FALSE;

__leave;
}
width = jcprops.JPGWidth;
height = jcprops.JPGHeight;
nchannels = 3;

bmp_pad = 1IJL_DIB_PAD_BYTES(width,nchannels);
bmp_row_size = (width * nchannels) + bmp_pad,;

/I allocate buffer to hold one row DIB data
bmp_row = new BYTE [bmp_row_size];

if(NULL == bmp_row)

{
bres = FALSE;

__leave;

}

memset(bmp_row,0,bmp_row_size);

5-22

Inside the Library

bmp_buf_size = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER)
+ bmp_row_size * height;

I

allocate buffer to hold entire DIB

bmp_buf = new BYTE [bmp_buf_size];

if(NULL == bmp_buf)

{

}

bres = FALSE;
__leave;

bmp_bits = reinterpret_cast<BYTE*>(bmp_buf +
sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER));

jcprops.DIBWidth = width;
jcprops.DIBHeight = height;
jcprops.DIBChannels = nchannels;
jcprops.DIBColor = IJL_BGR;
jcprops.DIBPadBytes = bmp_pad;
jcprops.DIBBytes = bmp_row;

I
I
1
1
1
I
I
I

Set the JPG color space ... this will always be
somewhat of an educated guess at best because JPEG
is "color blind" (i.e., nothing in the bit stream

tells you what color space the data was encoded from).
However, in this example we assume that we are
reading JFIF files which means that 3 channel images
are in the YCbCr color space and 1 channel images are
in the Y color space.

switch(jcprops.JPGChannels)

{

case 1:

{

jcprops.JPGColor
break;

UL G;

}

case 3:

{
jeprops.JPGColor = IJL_YCBCR,;

break;

5-23

Intel® JPEG Library Developer’s Guide

}

default:

{
/I This catches everything else, but no
/I color twist will be performed by the IJL.
jcprops.DIBColor = (IJL_COLOR)IJL_OTHER,;
jcprops.JPGColor = (IJL_COLOR)IJL_OTHER;
break;

}

}

I
/I Below is main code to decode image row by row
I

current_row = 0;

do

{
/I ROl is one row
local_roi.left = 0;
local_roi.top = current_row;
local_roi.right = width;

local_roi.bottom = current_row + 1;
jcprops.jprops.roi = local_roi;

/I decode ROI
jerr = ijlRead(&jcprops, 1JL_JFILE_READENTROPY);

if(IJL_ROI_OK != jerr)
{
bres = FALSE;
__leave;

}

/I copy row data and reverse row order, to obtain bottom-left
DIB.

memcpy(bmp_bits + (heigh t - 1 - current_row) *
bmp_row_size,bmp_row,bmp_row_size);

5-24

Inside the Library

/I advance to next row
current_row++;

} while(current_row != height);

I

/I Now we have decoded image, and do anything on it.
/I For example write to file...

I

Ipbmfh = reinterpret_cast<LPBITMAPFILEHEADER>(bmp_buf);

Ipbmfh->bfType = 'MB;
Ipbmfh->bfSize = bmp_buf_size;
Ipbmfh->bfReservedl = 0;
Ipbmfh->bfReserved2 = 0;

Ipbmfh->bfOffBits = sizeof(BITMAPFILEHEADER) +
sizeof(BITMAPINFOHEADER);

Ipbmih = reinterpret_cast<LPBITMAPINFOHEADER>(bmp_buf +
sizeof(BITMAPFILEHEADER));

Ipbmih->biSize = sizeof(BITMAPINFOHEADER);
Ipbmih->biWidth = width;

Ipbmih->biHeight = height;

Ipbmih->biPlanes = 1,

Ipbmih->biBitCount 24,

Ipbmih->biCompression = BI_RGB;
Ipbmih->biSizelmage = 0;

Ipbmih->biXPelsPerMeter =
Ipbmih->biYPelsPerMeter = 0;
Ipbmih->biClrUsed 0;

Ipbmih->biClrimportant = 0;
out_file = fopen(lpszBmpName,"wb");
if(NULL == out_file)

{
bres = FALSE;

__leave;

5-25

Intel” JPEG Library Developer's Guide

}
cnt = fwrite(bmp_buf,sizeof(BYTE),|pbmfh->bfSize,out_file);

if(cnt != Ipbmfh->bfSize)

{
bres = FALSE;
__leave;
}
Y I __try
_ finally
if(NULL !'= bmp_row)
{
delete [] bmp_row;
}

if(NULL !'= bmp_buf)

delete [| bmp_buf;

}
if(NULL != out_file)
{
fclose(out_file);
}

/I Clean up the IntelR JPEG Library.
ijIFree(&jcprops);
}

return bres;
} /I DecodeRowByRow()

5-26

Inside the Library

=

An example using the IntelR JPEG Library:
/Il -- Encode image by one MCU at a time.

/*

/I get_dib_parameters()

1l

/Il Purpose

1l gets image sizes from BMP file

/I Parameters
Il FILE* bmp_file - input BMP file to gets data from

Il int* width - pointer to variable to store image width

Il int* height - pointer to variable to store image height

1l int* nchannels - pointer to variable to store image number of
channels

1l

/I Returns

Il 0 - if read was successfully, if bmp_file is valid 24 bits per
pixel bitmap

1! -1 - if error has occured
Il
*/

static int get_dib_parameters(
FILE* bmp_file,
int* width,
int* height,
int* nchannels)

int res;
int cnt;
BITMAPFILEHEADER bfh;
BITMAPINFOHEADER bih;

cnt = fread(&bfh,sizeof(BYTE),sizeof(BITMAPFILEHEADER),bmp_file);
ificnt 1= sizeof(BITMAPFILEHEADER))
{

res = -1;

5-27

Intel® JPEG Library Developer’s Guide

5-28

goto Exit;
}

if(bfh.bfType 1= 'MB')
{

res = -1;
goto Exit;

}

cnt = fread(&bih,sizeof(BYTE),sizeof(BITMAPINFOHEADER),bmp_file);

ificnt 1= sizeof(BITMAPINFOHEADER))
{

res = -1;
goto Exit;
}

if(bih.biBitCount != 24 || bih.biCompression != Bl_RGB)
{

res = -1;

goto Exit;
}
*width = bih.biwidth;
*height = bih.biHeight;
*nchannels = 3;

res = 0;

Exit:

return res;

} /I get_dib_parameters()

/*
1
1
I
I
I

get_dib_chunk_data()

Purpose
gets chunk of data from BMP file.

Inside the Library

/I Parameters

Il FILE* bmp_file - input BMP file to gets data from

Il int dib_chunk_size - size of chunk of data

1l BYTE* dib_chunk_ptr - pointer to store data

1l

/I Return

Il 0 - if read was successfully, even if have reached the end of a
file

/I -1 - if error has occured

1l

/I Note

1l It is assumed that the file pointer has a correct position.

Il For bottom-up DIBs, it is necessary to invert the order of scan
lines

Il that is read from a file. Here for simplification we do not make
it.

1l

*/

static int get_dib_chunk_data(
FILE* bmp_file,
int dib_chunk_size,
BYTE* dib_chunk_ptr)

{ .
int cnt;
int res;

res = 0;
cnt = fread(dib_chunk_ptr,sizeof(BYTE),dib_chunk_size,bmp_file);

ifcnt < dib_chunk_size)
{ res = ferror(bmp_file);
if(0 = res)
{
res = -1;
}
}

return res;
} /I get_dib_chunk_data()

5-29

Intel® JPEG Library Developer’s Guide

/*

/I ijl_compress_large_dib()

I

/I Purpose

1l to demonstrate one techniques to compress large DIBs
1l on mcu line by mcu line basis.

1

/I Parameters
1l char* bmp_file - ASCIIZ string with input BMP file name
1l char* jpg_file - ASCIIZ string with output JPG file name

Il

/I Returns

Il 0 - if success

1! -1 - if error has occured
Il

*/

static int ijl_compress_large_dib(
char* bmp_name,
char* jpg_name)

{ . .
int i;
int IE
int res;
int width;
int height;
int mcu_width;
int mcu_height;
int num_x_mcu;
int num_y_mcu;
int dib_line_size;
int nchannels;
int dib_chunk_size;
BYTE* dib_chunk_ptr;
FILE* bmp_file;
IJLERR jerr;

JPEG_CORE_PROPERTIES jcprops;
dib_chunk_ptr = NULL;

bmp_file = fopen(bmp_name,"rb");

5-30

Inside the Library

if(NULL == bmp_file)
{

res -1;
goto Exit;

}

/I read source image parameters

res =
if(res = 0)
{
goto Exit;
}
jerr = ijlinit(&jcprops);

if(IJL_OK != jerr)
{

res = -1;
goto Exit;

}

jcprops.DIBChannels
jcprops.DIBWidth
jcprops.DIBHeight
jcprops.DIBPadBytes
jcprops.DIBColor
jcprops.DIBSubsampling

jcprops.JPGFile

jcprops.JPGBytes
jcprops.JPGSizeBytes

jcprops.JPGChannels
jcprops.JPGWidth
jcprops.JPGHeight
jcprops.JPGColor
jcprops.JPGSubsampling

jcprops.jquality

get_dib_parameters(bmp_file,&width,&height,&nchannels);

nchannels;

= width;

= height;
IJL_DIB_PAD_BYTES(width,nchannels);
IJL_BGR;
(IJL_DIBSUBSAMPLING)IJL_NONE;

= jpg_name;

= NULL;
0

nchannels;
width;
height;
IJL_YCBCR,;
1IJL_411;

75;

5-31

Intel® JPEG Library Developer’s Guide

5-32

/I sizes of mcu depend on subsampling

switch(jcprops.JPGSubsampling)

{

case IJL_NONE:
mcu_width =
mcu_height =
break;

8;
8;

case JL_422:
mcu_width =1
mcu_height = 8;
break;

6;

case JL_411:
mcu_width = 16;
mcu_height = 16;
break;

default:
res = -1;
goto Exit;
}
/I calculate number of mcu in image
num_x_mcu = (width + mcu_width - 1) / mcu_width;
num_y_mcu = (height + mcu_height - 1) / mcu_height;

dib_line_size = width * nchannels +

IJL_DIB_PAD_BYTES(width,nchannels);

dib_chunk_size = dib_line_size * mcu_height;

/I allocate memory to hold one mcu line
dib_chunk_ptr = new BYTE [dib_chunk_size];

if(NULL == dib_chunk_ptr)
{

res = -1;

goto Exit;
}

/I make illusion to IJL, that it is work with buffer

Inside the Library

jcprops.DIBBytes = dib_chunk_ptr;

/I process num_y mcu line
forG = 0 ; j < num_y_mcu; j++)

{

job)

/I get next mcu line from BMP file
res = get_dib_chunk_data(bmp_file,dib_chunk_size,dib_chunk_ptr);

if(res = 0)
{

goto Exit;
}

/I it is actually used pointer
jcprops.jprops.state.DIB_ptr = dib_chunk_ptr;

/I process num_x_mcu in mcu line
for(= 0 ; i < num_x_mcu; i++)

/I interrupt after each mcu
jcprops.jprops.interrupt = 1;

/I compress current mcu (advance pointer to next mcu is internal

jerr = ijlWrite(&cprops,lJL_JFILE_ WRITEWHOLEIMAGE);

if(IJL_INTERRUPT_OK == jerr)

{
/I current mcu was encoded successfully
continue;

}

if(IJL_OK == jerr)

{
/I job is complete: all image is processed
res = 0;
break;

}

if(IJL_OK > jerr)

{

/I error occured

5-33

Intel® JPEG Library Developer’s Guide

res = -1;
break;
}
}
}

/I if after processing num_y _mcu lines the library returns
IJL_INTERRUPT_OK,

/I it is to mean that some data are still keeping in internal
buffers. Need to flush it.

if(IJL_INTERRUPT_OK == jerr)

{
/I flush data from internal buffers
jcprops.jprops.interrupt = 1;
jerr = ijlWrite(&jcprops,lJL_JFILE_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{
res = -1;
goto Exit;
}
}
res = 0;
Exit:

if(NULL != bmp_file)
{

fclose(bmp_file);

}
if(NULL !'= dib_chunk_ptr)

delete [] dib_chunk_ptr;
}

ijIFree(&jcprops);

return res;
} /1 ijl_compress_large_dib()

5-34

Inside the Library

Rectangle-

I

of-Interest Decoding

Frequently only a portion of an image needs to be decompressed and
displayed on the screen at any time. For example, a portion of a JPEG
image may be displayed and “panned” at the user’s request. Using this
model, an application’s architecture becomes much more efficient and the
end-user gets to see the decoded image displayed in a significantly shorter
amount of time.

To efficiently manage these situations, an application may request a
rectangle-of-interest (ROI) to be decoded from the JPEG image by filling
in thelJL_RECT structure inlPEG_PROPERTIESDefore decoding image
data. Subsequent accesses to the IJL may be accelerated by simply
modifying the ROI values and callingRead()

The IJL uses several technologies designed to quickly access a given ROI
in an image, and stores information from previous ROI passes to speed
“panning” around an image.

The following code segment illustrates ROI decoding to fill an image
buffer in two passes.

/I An example using the IntelR JPEG Library:
/I -- Decode a JPEG image from a JFIF file using
/I the Rectangle-Of-Interest (ROI) method.

I

BOOL DecodeJPGFileByROI(LPCSTR IpszPathName)

{

BOOL
IJLERR
DWORD
DWORD
DWORD
DWORD
BYTE*

IJL_RECT

bres;

jerr;

width;

height;

nchannels;

wholeimagesize;
pixel_buf = NULL;
local_roi;

/I Allocate the 1JL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIEg&props;

5-35

Intel® JPEG Library Developer’s Guide

5-36

bres = TRUE;
__try
{
/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}

jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

/I Get information on the JPEG image
/I (i.e., width, height, and channels).

jerr = ijlRead (&jcprops, 1JL_JFILE_READPARAMS);
if(1IJL_OK != jerr)
{
bres = FALSE;
__leave;
}
/I Set up local data.
width = jcprops.JPGWidth;
height = jcprops.JPGHeight;
nchannels = 3;

/| Decode int o a 3 channel pixel buffer.

/I For this example, we will allocate an image buffer half
/I as big as the input image. Then, we will decode the

/I top half and bottom half of the image separately.

/I This could of course be extended to partition the image
/I into several rectangular tiles which would require a small
/I (or fixed size) image buffer. This technique yields

/I greatly increased memory performance for most

/I applications!

wholeimagesize = width * ((height + 1) >> 1) * nchannels;

/I Allocate memory to hold the decompressed image data.
pixel_buf = new BYTE [wholeimagesize];

Inside the Library

if(NULL == pixel_buf)

{

bres = FALSE;

__leave;
}
/I Set up the info on the desired DIB properties.
jcprops.DIBWidth = width;
/I Set a bottom-up DIB of half the original image size.
jcprops.DIBHeight = (height + 1) >> 1,

jcprops.DIBChannels = nchannels;

jcprops.DIBColor = |JL_BGR;
jcprops.DIBPadBytes = 0;
jcprops.DIBBytes = pixel_buf;

/I Set the JPG color space ... this will always be

/I somewhat of an educated guess at best because JPEG
/[is "color blind" (i.e., nothing in the bit stream

/I tells you what color space the data was encoded from).
/I However, in this example we assume that we are

/I reading JFIF files which means that 3 channel images

/I are in the YCbCr color space and 1 channel images are
/I in the Y color space.

switch(jcprops.JPGChannels)

case 1:

{

jcprops.JPGColor
break;

UL G;

}

case 3:

{
jeprops.JPGColor = IJL_YCBCR,;
break;

}

default:
/I This catches everything else, but no

/I color twist will be performed by the IJL.
jeprops.DIBColor = (IJL_COLOR)IJL_OTHER,;

5-37

Intel® JPEG Library Developer’s Guide

5-38

jeprops.JPGColor = (IJL_COLOR)IJL_OTHER;

break;
}
}
/I Get the top half of the image.
local_roi.left = 0;
local_roi.top = 0;
local_roi.right = width;

local_roi.bottom = (height + 1) >> 1;
jcprops.jprops.roi = local_roi;

/I Now actually get the top half of the JPEG image data
/I into the pixel buffer.

jerr = ijlRead (&jcprops, IJL_JFILE_READENTROPY);
if(IJL_ROI_OK != jerr)
{
bres = FALSE;
__leave;
}

/I ... now you probably want to do something with the
/I decompressed top half of the image like display it ...

/I Next, get the bottom half of the image.

local_roi.left = 0;
local_roi.top = (height + 1) >> 1;
local_roi.right = width;

local_roi.bottom = height;
jcprops.jprops.roi = local_roi;

/I Now actually get the bottom half of the JPEG image data
/I into the pixel buffer.

jerr = ijlRead (&jcprops, IJL_JFILE_READENTROPY);
if(IJL_ROI_OK != jerr)
{

bres = FALSE;

__leave;

Inside the Library

}

/I ... now you probably want to do something with the
/I decompressed bottom half of the image like display it ...
/i

Yoty
__finally
{
if(NULL !'= pixel_buf)
{
delete [] pixel_buf;
}

/I Clean up the IntelR JPEG Library.
ijIFree (&jcprops);
}

return bres;
} /I DecodeJPGFileByROI()

5-39

Intel” JPEG Library Developer's Guide

Scaled Decoding

Most JPEG images can be efficiently decoded at 1/2, 1/4, or 1/8 the
original image resolution. This is known as “scaled decoding”, and it is
typically at least two times faster than decoding an entire image. The IJL
supports scaled decoding in parallel with rectangle-of-interest and
interrupted decoding.

In practice, scaled decoding is very useful for generating “thumbnails”
from JPEG images that do not already contain a thumbnail embedded in
their bit stream.

The following table (Table 5-1) shows the calculations needed to determine
the resulting scaled image size from an original JPEG image of size
(Width x Height).

Table 5-1 Scaled Decoding Calculations

Scaled

Decoding Type Resulting Width’ & Height’ 1/0 Type Specifier

1/2 Size Width’ = INT((Width + 1) / 2) IJL_IXXXX READONEHALF
Height' = INT((Height + 1) / 2)

1/4 Size Width’ = INT((Width + 3) / 4) IJL_JXXXX_READONEQUARTER
Height' = INT((Height + 3) / 4)

1/8 Size Width’ = INT((Width + 7) / 8) 1JL_JXXXX_READONEEIGHTH

Height' = INT((Height + 7) / 8)

To compute the size of the scaled image, use the following macro,
included in thajl.h file:

IJL_DIB_SCALE_SIZE(jpgsize, scale) =
(((jpgsize)+(scale)-1)/(scale))

For example, an image of 2407 x 491 pixels would have a 1/8 scaled size
of 301 x 62 pixels.

5-40

Inside the Library

The following code illustrates scaled decoding of a JPEG image to generate
a 1/8 sized version of the original JPEG image.

I
/I An example using the IntelR JPEG Library:
/I -- Decode a JPEG image from a JFIF file.
/I using the scaled decoding method.

I

BOOL DecodeJPGFileOneEighth(LPCSTR IpszPathName)
{

BOOL bres;

IJLERR jerr;

DWORD width;

DWORD height;

DWORD nchannels;

DWORD wholeimagesize;

BYTE* pixel_buf = NULL;

/I Allocate the 1JL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIE&props;

bres = TRUE;
_try
{
/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}

jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

/I Get information on the JPEG image
/I (i.e., width, height, and channels).
jerr = ijlRead (&jcprops, IJL_JFILE_READPARAMS);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

5-41

Intel® JPEG Library Developer’s Guide

5-42

}

/I Set up local data.
/I Note: In this case, width and height are rounded
/I to the nearest factor of eight.

width = (jcprops.JPGWidth + 7) >> 3;
height = (jcprops.JPGHeight + 7) >> 3;
nchannels = 3; // Decode int 0 a 3 channel pixel buffer.

wholeimagesize = (width * height * nchannels);

/I Allocate memory to hold the decompressed image data.
pixel_buf = new BYTE [wholeimagesize];
if(NULL == pixel_buf)

{

bres = FALSE;

__leave;
}
/I Set up the info on the desired DIB properties.
jcprops.DIBWidth = width;
jcprops.DIBHeight = height; // Implies a bottom-up DIB.
jcprops.DIBChannels = nchannels;
jcprops.DIBColor = IJL_BGR;
jcprops.DIBPadBytes = 0;
jcprops.DIBBytes = pixel_buf;

/I Set the JPG color space ... this will always be

/I somewhat of an educated guess at best because JPEG
/[is "color blind" (i.e., nothing in the bit stream

/I tells you what color space the data was encoded from).
/I However, in this example we assume that we are

/I reading JFIF files which means that 3 channel images

/I are in the YCbCr color space and 1 channel images are
/I in the Y color space.

switch(jcprops.JPGChannels)

case 1:

{
jeprops.JPGColor = IJL_G;
break;

}

Inside the Library

case 3:

{
jeprops.JPGColor = IJL_YCBCR,;
break;

}

default:

{
/I This catches everything else, but no
/I color twist will be performed by the IJL.
jeprops.DIBColor = (IJL_COLOR)IJL_OTHER,;
jcprops.JPGColor = (IJL_COLOR)IJL_OTHER,;
break;

}

}

/I Now get the actual JPEG image data into the pixel buffer
/Il and scale the output to 1/8 th the original size.
jerr = ijlRead (&jcprops, IJL_JFILE_READONEEIGHTH);
if(IJL_OK != jerr)
{

bres = FALSE;

__leave;

}

1

/I ... now you probably want to do something with the
/I decompressed scaled image like display it ...

1

__finally
if(NULL !'= pixel_buf)
{

delete [] pixel_buf;
}

/I Clean up the IntelR JPEG Library.

5-43

5

Intel” JPEG Library Developer's Guide

5-44

ijlIFree

}

return bres;

(&jcprops);

} /I DecodeJPGFileOneEighth()

Embedded Thumbnail Decoding

The IJL supports decoding some types of thumbnails embedded in JFIF
compliant images. Specifically, the IJL supports decoding of
uncompressed RGB thumbnails (either 1 byte/pixel or 3 bytes/pixel) as
stored in accordance with the JFIF specification versions 1.01 and 1.02.
Thumbnails compressed using JPEG are not supported at this time.

Before attempting to decode an embedded thumbnail, the user must
provide a 24-bit DIB of at least 256x256 pixels. This is because the
maximum dimensions of an embedded JFIF thumbnail are 256x256 pixels.
Also, if the user wants the thumbnail decoded into packed 24-bit RGB
values, then theiBColor field needs to be set toL_RGB (otherwise it

will be decoded into packed 24-bit BGR values).

Then, in order to actually decode the embedded thumbnail, the user needs

to set theJLIOTYPE parameter talL_JXXXX_READTHUMBNAILWhen

callingijRead() . ThisIJLIOTYPE may be used interchangeably with

1JL_JXXXX_READPARAM®DN JFIF images. After this function call, the

JPEG_CORE_PROPERTIEdata structure is updated as follows:

1. The thumbnail's width and height (in pixels) are stored in the
JPGThumbWidth andJPGThumbHeight fields (values of O indicate no
embedded thumbnail present or an unsupported thumbnail), and

2. Decoded pixel values are placed into the buffer pointed to by the
DIBBytes field.

In practice, embedded thumbnails have been only rarely found in standard
(i.e., non-proprietary) formats in typical JPEG images. The IJL does not
support proprietary embedded thumbnails.

Inside the Library

Progressiv e Image Support

Decodirg of Progressie DCT-bagd JPES images is supporte by the [JL.
Progressieimage decodirg is transparetto the erd use ard requires no
specid suppot from the develope (i.e., the IJL does nat support
progressie display of theimage).

Startirg from versian 1.5, the IJL suppors authorirg (encoding of
progressie images (note tha restat intervak for encodirg are not
currently supported).

To creak aprogressie JPEG image the use shout call the library
functionijiwrite() with the progressive foun d field setto 1inthe
JPEG_PROPERTIBS structure The following code sequene may sere as
an example:

JPEG_CORE_PROPERTEE jcprops;
ijlinit (&jcprops);

/' Request to create a progressive image
jcprops.jprops.progressive_foun d = 1;

ijiwrite (&cprops,lIL_IXXXX_WRITEWHOLEIMAGE);

The resultirg image can be written eithe to afil e (if ijilwrite() iscalled
with secoml parametesd to 1JL_JFILE_ WRITEWHOLEIMAGE) or a
previousy allocatel memoy buffer (for calls with
IJL_JBUFF_WRITEWHOLEIMAGE

The progressie encodirg algorithm which can be eithe successive
approximatio or spectraselectionard the numbe of scansare fixed in

the library and canna be change by the user Thes parametes are set
dependig on the numbe of channet and color spae of the JPEG image.
The library suppors the following ses of progressie encodirg parameters:

for 1-chann&lJL_ Gimages:
scan court is 6, with parametes per ead pas as

5-45

Intel” JPEG Library Developer's Guide

5-46

1 scan; DC component 0; ss = 0, se = 63; ah =0, al = 1
2 scan; AC component 0; ss = 1, se =5, ah =0, al =2
3 scan; AC component O0; ss = 6, se = 63; ah = 0, al = 2
4 scan; AC component 0; ss = 1, se = 63; ah = 2, al = 1
5 scan; DC component 0; ss = 0, se = 63; ah = 1, al = 0
6 scan; AC component 0; ss = 1, se = 63; ah = 1, al = 0

for 3-channelJL_YCBCR images:
scan count is 10, with parameters per each pass as

1 scan; DC components 0,1,2; ss = 0, se = 63; ah = 0, al = 1
2 scan; AC component O0; ss = 1, se = 5; ah =0, al = 2

3 scan; AC component 2; ss = 1, se = 63; ah = 0, al = 2

4 scan; AC component 1; ss = 1, se = 63; ah = 0, al = 2

5 scan; AC component 0; ss = 6, se = 63; ah = 0, al = 2

6 scan; AC component 0; ss = 1, se = 63; ah =2, al = 1

7 scan; DC components 0,1,2; ss = 0, se = 63; ah = 1, al = 0
8 scan; AC component 2; ss = 1, se = 63; ah = 1, al = 0

9 scan; AC component 1; ss = 1, se = 63; ah = 1, al = 0

10 scan; AC component 0; ss = 1, se = 63; ah = 1, al = 0

for 3-channelJL_RGB images:
scan count is 8, with parameters per each pass as

1 scan; DC components 0,1,2; ss = 0, se = 63; ah = 0, al = 1
2 scan; AC component O0; ss = 1, se = 5; ah =0, al =0

3 scan; AC component 1; ss = 1, se =5, ah =0, al =0

4 scan; AC component 2; ss = 1, se = 5, ah =0, al =0

5 scan; DC component 0,1,2; ss =0, se = 63; ah = 1, al = 0
6 scan; AC component 0; ss = 6, se = 63; ah =0, al = 0

7 scan; AC component 1; ss = 6, se = 63; ah = 0, al = 0

8 scan; AC component 2; ss = 6, se = 63; ah = 0, al = 0

for 3-channelJL_OTHER images:
scan count is 8, with parameters per each pass as

scan; DC components 0,1,2; ss = 0, se = 63; ah = 0, al = 1
scan; AC component 0; ss = 1, se = 5; ah = 0, al =
scan; AC component 1; ss 1, se =5, ah =0, al =
scan; AC component 2; ss = 1, se = 5; ah = 0, al =
scan; DC component 0,1,2; ss =0, se = 63; ah = 1, al = 0
scan; AC component 0; ss = 63; ah =0, al = 0
scan; AC component 1; ss = 6, se = 63; ah = 0, al = 0
scan; AC component 2; ss = 6, se = 63; ah = 0, al = 0

(el eNe]

oO~NO O WN P

Inside the Library

for 4-channelJL_RGBA_FPX images:
scan count is 10, with parameters per each pass as

1 scan; DC components 0,1,2,3; ss =0, se = 63; ah = 0, al = 1
2 scan; AC component 0; ss = 1, se =5, ah =0, al =0

3 scan; AC component 1; ss = 1, se =5, ah =0, al =0

4 scan; AC component 2; ss = 1, se = 5, ah =0, al =0

5 scan; AC component 3; ss = 1, se =5, ah =0, al =0

6 scan; DC component 0,1,2,3; ss =0, se = 63; ah = 1, al =0
7 scan; AC component 0; ss = 6, se = 63; ah =0, al = 0

8 scan; AC component 1; ss = 6, se = 63; ah = 0, al = 0

9 scan; AC component 2; ss = 6, se = 63; ah = 0, al = 0

10 scan; AC component 3; ss = 6, se = 63; ah = 0, al = 0
for 4-channelJL_YCBCRA_FPXimages:

scan count is 11, with parameters per each pass as

1 scan; DC components 0,1,2, 3; ss =0, se = 63' ah =0, al =1
2 scan; AC component O0; ss = 1, se = 5; ah =0, al = 2

3 scan; AC component 2; ss = 1, se = 63; ah = 0, al = 1

4 scan; AC component 1; ss = 1, se = 63; ah = 0, al = 1

5 scan; AC component 3; ss = 1, se = 63; ah = 0, al = 0
6 scan; AC component 0; ss = 6, se = 63; ah = 0, al = 2

7 scan; AC component 0; ss = 1, se = 63; ah =2, al =

8 scan; DC components 0,1,2,3; ss =0, se = 63; ah = 1, aI =0
9 scan; AC component 2; ss = 1, se = 63; ah = 1, al = 0

10 scan; AC component 1; ss = 1, se = 63; ah = 1, al =
11 scan; AC component 0; ss = 1, se = 63; ah = 1, al = 0

for 4-channelJL_OTHER images:
scan count is 10, with parameters per each pass as

1 scan; DC components 0,1,2,3; ss =0, se = 63; ah = 0, al = 1
2 scan; AC component O0; ss = 1, se = 5; ah =0, al = 0

3 scan; AC component 1; ss = 1, se =5, ah =0, al =0

4 scan; AC component 2; ss = 1, se = 5, ah =0, al =0

5 scan; AC component 3; ss = 1, se = 5, ah =0, al =0

6 scan; DC component 0,1,2,3; ss =0, se = 63; ah = 1, al =0
7 scan; AC component 0; ss = 6, se = 63; ah O al =0

8 scan; AC component 1; ss = 6, se = 63; ah = al =0

9 scan; AC component 2; ss = 6, se = 63; ah = 0, aI =0

10 scan; AC component 3; ss = 6, se = 63; ah = 0, al = 0

5-47

Intel® JPEG Library Developers Guide

In the aboe list we use the following notation:

ss —thefirst index in the spectraselectio band;
se —thelag index in the spectraselection band;
ah —the highes bit in the successig aproximation;
al —thelowed bit in the successig aproximation.

Accessin g JPEG Images From a Buffer

JPES isuseal asa compressin standad in the FlashPx ard TIFF 6.0 file
formats and the IJL suppors decodimg of data from thes sources.
FlashPx and/a TIFF codes may extrad JPES dataard provide a buffer
(asopposéd to afile) to the 1JL, or they may require JPES datto be
buffered before output.

Note tha the I1JL allows JPEG datto be read from, or written to, a buffer
in all acces modes Certain applicatiors may find buffer-basd JPEG
acces significantly faste than file-basel JPES access.

To write JPES datato a buffer, do the following:
« Allocate a buffer of sufficiert size (usualy the buffer equa to the size
of uncompressedat will suffice). If the buffer sizeis not enoughthe
[JL will retum the errar coce 1JL_BUFFER_TOO_SMALL
« Sd the necessarfieldsin the JPEG_CORE_PROPERTEEStructue as
JPGFil e = NULL
JPGByte s = pointe to the allocatel buffer
JPGSizeByte s = buffer sizein bytes
 Cal theijiwrite() function with IJL_BUFF_WRITEWHOLEIMAE as
its secom parameterOn return the buffer will contan the createl JPEG
datg and the JPGSizeByte s field will specify the actua JPES data size
in bytes Note that earlier library versiors returnel incorred JPEG data
sizein the buffer and replacel the pointe to the buffer. This bug was
fixed inthe IJL versian 1.5.

To decoa JPEG data from a buffer, follow thes steps:

¢ Gd the buffer with JPES data
* Sd thefieldsin the JPEG_CORE_PROPERTEEStructue as
JPGFil e = NULL

Inside the Library

JPGBytes = pointer to the buffer with JPEG data
JPGSizeBytes = buffer size in bytes
e Call theijlRead() function withlJL_BUFF_READEWHOLEIMAGRS
its second parameter.

The code examples below illustrate how to read JPEG data from a buffer,
or write them to a buffer.
/I
/I An example using the Intel(R) JPEG Library:

/I -- Decode image from a JFIF buffer.
I

BOOL DecodeFromJPEGBuffer(
BYTE* IpJpgBuffer,
DWORD dwJpgBufferSize,
BYTE** IppRgbBuffer,
DWORD* IpdwWidth,
DWORD* IpdwHeight,
DWORD* IpdwNumberOfChannels)

BOOL bres;

IJLERR jerr;

DWORD dwWholelmageSize;
BYTE* IpTemp = NULL;

/I Allocate the 1JL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIES jcprops;

bres = TRUE;

_try
{
/I Initialize the Intel(R) JPEG Library.
jerr = ijlinit(&jcprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

}

/I Get information on the JPEG image
/I (i.e., width, height, and channels).

5-49

Intel® JPEG Library Developer’s Guide

jcprops.JPGFile
jcprops.JPGBytes

NULL,;
IpJpgBuffer;

jcprops.JPGSizeBytes = dwJpgBufferSize;

jerr = ijlRead(&jcprops, 1JL_JBUFF_READPARAMS);
if(IJL_OK != jerr)

{

}

1
1
1
1
1
1
1
1

bres = FALSE;
__leave;

Set the JPG color space ... this will always be
somewhat of an educated guess at best because JPEG
is "color blind" (i.e., nothing in the bit stream

tells you what color space the data was encoded from).
However, in this example we assume that we are
reading JFIF files which means that 3 channel images
are in the YCbCr color space and 1 channel images are
in the Y color space.

switch(jcprops.JPGChannels)

5-50

case 1:

{
jcprops.JPGColor
jcprops.DIBColor
jcprops.DIBChannels
break;

}

UL_G;
IJL_RGB;
3;

case 3:

{
jcprops.JPGColor
jcprops.DIBColor
jcprops.DIBChannels
break;

}

IJL_YCBCR;
IJL_RGB;
3;

default:

{

/I This catches everything else, but no
/I color twist will be performed by the IJL.

Inside the Library

jcprops.JPGColor
jcprops.DIBColor

jcprops.DIBChannels

break;

}
}

IJL_OTHER;
IJL_OTHER;
jcprops.JPGChannels;

/I Compute size of desired pixel buffer.
dwWholelmageSize = jcprops.JPGWidth * jcprops.JPGHeight *

jcprops.DIBChannels;

/I Allocate memory to

hold the decompressed image data.

IpTemp = new BYTE [dwWholelmageSize];

if(NULL == IpTemp)
{
bres = FALSE;
__leave;

}

/I Set up the info on the desired DIB properties.

jcprops.DIBWidth =
jcprops.DIBHeight =
jcprops.DIBPadBytes =
jcprops.DIBBytes =
/I Now get the actual
jerr = ijlRead(&jcprops,
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

}

Y

__fry

__finally
{
if(FALSE == bres)
{
if(NULL != IpTemp)
{
delete [] IpTemp;

jcprops.JPGWidth;
jeprops.JPGHeight;
0;

JPEG image data into the pixel buffer.
IJL_JBUFF_READWHOLEIMAGE);

5-51

Intel® JPEG Library Developer’s Guide

IpTemp = NULL;
}
}

/I Clean up the Intel(R) JPEG Library.
ijIFree(&jcprops);

*lpdwWidth = jcprops.DIBWidth;
*lpdwHeight = jcprops.DIBHeight;
*lpdwNumberOfChannels = jcprops.DIBChannels;
*|ppRgbBuffer = |pTemp;

} /I __finally

return bres;
} /I DecodeFromJPEGBUuffer()

I
/I An example using the Intel(R) JPEG Library:
/I -- Encode Windows DIB to JPEG buffer.

I

BOOL EncodeToJPEGBuffer(
BYTE* IpRgbBuffer,
DWORD dwWidth,
DWORD dwHeight,
BYTE** IppJpgBuffer,
DWORD* IpdwJpgBufferSize)

BOOL bres;

IJLERR jerr;

DWORD dwRgbBufferSize;
BYTE* IpTemp;

/I Allocate the 1L JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIES jcprops;

bres = TRUE;

_try
{
/I Initialize the Intel(R) JPEG Library.

5-52

Inside the Library

jerr = ijlinit(&jcprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;

}

dwRgbBufferSize = dwWidth * dwHeight * 3;

IpTemp = new BYTE [dwRgbBufferSize];
if(NULL == IpTemp)
{

bres = FALSE;

__leave;

}

/I Set up information to write from the pixel buffer.
jcprops.DIBWidth = dwWidth;
jcprops.DIBHeight dwHeight; // Implies a bottom-up DIB.

jcprops.DIBBytes = IpRgbBuffer;
jcprops.DIBPadBytes = 0;
jcprops.DIBChannels = 3
jcprops.DIBColor = IJL_RGB,;
jcprops.JPGWidth = dwWidth;
jcprops.JPGHeight = dwHeight;
jcprops.JPGFile = NULL;
jcprops.JPGBytes = IpTemp;
jcprops.JPGSizeBytes = dwRgbBufferSize;
jcprops.JPGChannels = 3;
jcprops.JPGColor = IJL_YCBCR,;

jcprops.JPGSubsampling IJL_411; /I 4:1:1 subsampling.
jcprops.jquality = 75; /I Select "good" image quality

/Il Write the actual JPEG image from the pixel buffer.
jerr = ijlWrite(&jcprops,lJL_JBUFF_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{

bres = FALSE;

__leave;

}

5-53

Intel” JPEG Library Developer's Guide

5-54

Y I __try
_ finally
if(FALSE == bres)
{
if(NULL != IpTemp)
{
delete[] IpTemp;
IpTemp = NULL;
}
}
*|ppJpgBuffer = IpTemp;

}

*|pdwJpgBufferSize = jcprops.JPGSizeBytes;

/I Clean up the Intel(R) JPEG Library.
ijIFree(&jcprops);

return bres;

} /I EncodeToJPEGBUuffer()

Odd Data Formats

Most of today’s JPEG files are stored in the JPEG File Interchange Format
(JFIF), and the IJL supports JFIF version 1.02. JFIF is a minimal file
format that enables JPEG bit streams to be exchanged between a wide
variety of platforms and applications. One feature of JFIF is that it
specifies a standard color space. JFIF files are stored using either the
3-channel luminance/chrominance color space (YCbCr as defined by CCIR
601 (256 levels)), or the 1-channel grayscale color space (only the Y
component of YCbCr).

However, the JPEG interchange format (not JFIF) defines compressed data
storage formats that allow a great deal of flexibility to the representation of
a set of data. A JPEG bit stream may have many meanings other than the
common JFIF 3-channel, 2-D interleaved plane image data.

Inside the Library

A JPEG image does not necessarily contain any information that specifies
the color space of the image data. Any JPEG decoder is thus forced to
make assumptions about the color format of some JPEG images. Modern
file formats like TIFF 6.0 and FlashPix contain enough color space
information to avoid this ambiguity.

JPEG is often called “color blind”. This is because nothing within a
JPEG bit stream indicates what color format was used to encode the
image data. When the color format of a JPEG image is unknown, or
not supported by the IJL (i.e., Adobe’s* CMYK), it is suggested that
the user specify theL_OTHER color space format for both the

JPGColor andDIBColor fields in theJPEG_CORE_PROPERTIEdata
structure. This technique prevents the IJL from applying a color space
conversion. Then, it becomes the user’s responsibility to perform their
own color space manipulation (if so desired) outside of the IJL.

If a JPEG bit stream indicates that data will be stored in separate
planes, the IJL will present the data in a pixel-interleaved format. This
may cause unexpected results, especially for data represented using
multiple scans (i.e., one scan per block-row).

5-55

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

Pre- and Post-Processing

DIBs

Figure 6-1

Image data in a Device Independent Bitmap (DIB) is stored in a byte
interleaved form, one byte (8-bits) per channel. For the most common
type, the Windows 24-bit DIB, the data is stored in a form graphically
illustrated by Figure 6-1.

Windows 24-bit DIB Data Format

) T T

Pixel (0,0) Pixel (1,0) Pixel (n,0) Padding Pixel (0,1)
bytes added
to make DIB
linewidth lie
on 4-byte
boundary.

When authoring JPEG images, the IJL can receive input from a pixel
buffer. Likewise, when decoding JPEG images, the IJL can send the
output to a pixel buffer. The user has great freedom in specifying pixel
buffer formats with regards to the number of color channels, the color
space interpretation, and end-of-line padding.

The IJL supports input data with:

¢ Interleaved color planes.

6-1

Intel” JPEG Library Developer's Guide

* Non-subsampled data (with the exceptionJaf YCBCR color space,
in which case only 4:2:2 subsampled pixel interleaved data are
supported).

e Color channels from 1 to 255.

e Widths from 1 to 65,535.

¢ Heights from -65,535 to 65,535 (where values > 0 indicate a
bottom-up DIB).

e End-of-line padding, or pad bytes, must be >=0.

Additionally, for thumbnail output DIBs, the width and the absolute value
of height must not exceed 255, and the color space must be either
3-channelJL_RGB or1JL_BGR.

IJL Color Spaces

The following table (Table 6-1) illustrates the various DIB and JPEG color
spaces supported by the 1JL.

Table 6-1 IJL Supported Color Spaces

Valid IJL Valid 1JL
DIB Color JPEG Color

IJL Color Space Space? Space? Description

JL_G Yes Yes Grayscale (luminance only) 1 channel color
space.

IJL_RGB Yes Yes RGB (red-green-blue) 3 or 4 channel color
space.

IJL_BGR Yes No RGB 3 channel color space where the byte
ordering has been reversed to BGR.

IJL_RGBA_FPX Yes Yes FlashPix RGB 4 channel color space with

pre-multiplied opacity.

continued*

6-2

Pre- and PostProcessing

IJL Color Space

Valid IJL Valid 1JL
DIB Color JPEG Color
Space? Space? Descri ption

IJL_YCBCR

Yes Yes CCIR 601 YCbCr (luminance-chrominance)
3 channel color space. Starting from version
1.5, the 1JL supports the specific 4:2:2
subsampled pixel interleaved format used
both as input data format for encoding, and
output data format for decoding. In this case
the data sequence is setto be Y0-CbO-Y1-
Cr0-Y2-Cb1-Y3-Crl-... .

IJL_YCBCRA_FPX No Yes FlashPix YCbCr 4 channel color space with

IJL_OTHER

pre-multiplied opacity and the YCbCr values
are stored "flipped"” (i.e., X' = 255 - X).

Yes Yes Unknown color space where the user
specifies the number of channels.

ThelJL_ Gcolor spae specifies that the DIB is stored in aLuminane only
format with 8-bits per channel The color spa@ is defined asthe
Luminane (or Y) componenof the standad YCbCr color spae definad in
CCIR 601 for 256 levels (8-bit) per channel.

The IJL_RG B color spae follows the 8-bits per color channédefinition of
the SR@B color spaceDatais stored Red Green Blue from the lowed to
the highes byte of a pixel.

The lJL_BG R color spae is similar to the 1JL_RG B color spa@ exoept the
byte orde of the three channes are flipped. Datais stored Blue, Green,
Red from the lowed to the highes bytes of apixel. 1JL_BG Rissupported
to provide fag input ard outpu from standag Windows DIBs and Bitmaps
(which use aBGR byte order).

ThelJL_RGBA_FPX ard IJL_YCBCRA_FPX color spacs are FlashPx 4
channécolor spaces with pre-multiplied opaciy and have been provided
for greate compatibility with FlashPx JPES compessé files.

The lJL_YCBCR color spae isthe standad YCbCr color spae definad in
CCIR 601 for 256 levels (8-bit) per channel Thisisthe color spa@ used
in mod JPES images and is supportd by JAF, EXIF, TIFF, FlashPix,

6-3

Intel® JPEG Library Developers Guide

ard SHAFF fil e format amorg others It is strongly recommende that
uses autho JPEG images in this color format (even when startirg from a
monochrone or grayscat source) ThelJL_YCBCRA_FPX color spa@is
not supporte as valid DIB formatfor encoding.

The 1IJL_OTHER color spae is used for user-defind or unknown DIB color
spacesThe IJL will not perform ary color spa@ conversim when
decodirg JPEG imagesto an 1JL_OTHER DI B color space It will simply
copy the appropriaé number of channed from the soure JPEs image.

Subsampling

The one (1) channégrayscale color space is nat allowed to be subsampled.

Three (3) channécolor spacs are allowed to be subsampld in eithe the
4:1:1 or the 4:2:2 formats The4:1:1 forma isachievel by using a
horizontd samplirg facta of 2 and averticd samplirg factar of 2 in both
the secom and third channels The 4:2:2 format is achievel by using a
horizontd samplirg facta of 2 and averticd samplirg factar of 1 in both
the secoml ard third channels The non-subsenpled format or 1:1:1, is
denotel by a horizontd samplirg factar of 1 ard averticd samplirg factor
of 1 in all three channels.

Four (4) channécolor spacs are allowed to be sutsamplel in eithe the
4:1:14 or the 4:2:24 formats The 4:1:14 forma isachieve by using a
horizontd samplirg facta of 2 and averticd sampling factar of 2 in both
the secoml ard third channels The 4:2:2:4 format is achievel by using a
horizontd samplirg facta of 2 and averticd samplirg factar of 1 in both
the secoml and third channels The non-subseanpled format or 1:1:1:1 is
denotel by a horizontd samplirg factar of 1 and averticd samplirg factor
of 1inall four channels The fourth channelthe alpha channelis never
allowed to be subsampled.

All neighborirg pixels on asamplirg intervd are taken with equa weights
to form the resultirg value.

Pre- and Post-Processing

Upsampling

The IJL decompresses images that can have arbitrary sampling factors and
maximum 10 blocks per each MCU, as compliant with JPEG standard. The
default algorithm for decoding subsampled imagesLisBOX_FILTER ,

which means that the decoded pixel value is simply replicated as many
times as the sampling factors indicate. If both horizontal and vertical
sampling factors do not exceed 2, you can use upsampling with triangular
filter, which yields better results. For this purpose, set the

upsampling_type field in theJPEG_CORE_PROPERTIEStructure to
IJL_TRIANGLE_FILTER .

In scaled decoding of subsampled images &esded Decodingwith
appropriately matching sampling factors (i.e. horizontal and vertical factors
are equal and do not exceed 2), upsampling can be replaced by performing
DCT of a larger size, which provides faster decoding with good image
quality results. The IJL implements that approach, for instance, in case of
scaled decoding of images at 1/2 size with upsampling 4:1:1.

6-5

Intel” JPEG Library Developer's Guide

6-6

Decoding and Post-Processing Matrix

The following table illustrates permitted color space decoding

combinations and post-processing options in the 1JL.

Table 6-2 IJL Decoding and Post-Processing Matrix
JPEG JPEG DIB DIB Format of
Color Space Channels Color Space Channels Decoded Data Post-Processing
JL_G 1 UL_G 1 Y, Y, ... CC No & US No
JL_G 1 IJL_RGB 3 YYY, YYY, ... CC No & US No
JL_G 1 IJL_BGR 3 YYY, YYY, ... CC No & US No
(see note 1
below)
JL_G 1 IJL_RGBA_ 4 YYYO, YYYO, ... CC No & US No
FPX
IJL_RGB 3 IJL_RGB 3 RGB, RGB, ... 1:1:1 CCNo & US
No
4:1:1 CC No & US
Yes
4:2:2 CCNo & US
Yes
1JL_RGB 3 IJL_BGR 3 BGR, BGR, ... 1:1:1 CC No & US

No

4:1:1 CC No & US
Yes

4:2:2 CC No & US
Yes

continued

Pre- and Post-Processing

Table 6-2 IJL Decoding and Post-Processing Matrix (continued)
JPEG JPEG DIB DIB Format of
Color Space Channels Color Space Channels Decoded Data Post-Processing
IJL_RGB 3 IJL_RGBA_ 4 RGBO, RGBO, ... 1:1:1 CC No & US
FPX No
4:1:1 CC No & US
Yes
4:2:2 CC No & US
Yes
IJL_RGBA_ 4 IJL_RGBA_ 4 RGBA, RGBA, ... 1:1:1:1 CCNo &
FPX FPX (see note 2 US No
below) 4:1:1:4 CCNo &
US Yes
4:2:2:4 CC No &
US Yes
IJL_YCBCR 3 JL_G 1 Y,Y, 1:1:1 CCNo & US
No
4:1:1 CC No & US
Yes
4:2:2 CC No & US
Yes
IJL_YCBCR 3 IJL_YCBCR 3 Y0-Cb0-Y1-CrO- 4:2:2 CC No & US
Y2-Cb1-... (see No
note 4 below)
IJL_YCBCR 3 IJL_RGB 3 RGB, RGB, ... 1:1:1 CCYes &

US No

4:1:1 CC Yes &
US Yes

4:2:2 CC Yes &
US Yes

continued

6-7

Intel” JPEG Library Developer's Guide

6-8

Table 6-2 IJL Decoding and Post-Processing Matrix ~ (continued)
JPEG JPEG DIB DIB Format of
Color Space Channels Color Space Channels Decoded Data Post-Processing
IJL_YCBCR 3 IJL_BGR 3 BGR, BGR, ... 1:1:1 CCYes &
US No
4:1:1 CC Yes &
US Yes
4:2:2 CC Yes &
US Yes
IJL_YCBCR 3 IJL_RGBA_ 4 RGBO, RGBO, ... 1:1:1 CCYes &
FPX US No
4:1:1 CC Yes &
US Yes
4:2:2 CC Yes &
US Yes
IJL_YCBCRA_ 4 IJL_RGBA_ 4 RGBA, RGBA, ... 1:1:1:1 CCYes &
FPX FPX (see note 3 US No
below) 4:1:1:4 CYes &
US Yes
4:2:2:4 CYes &
US Yes
IJL_OTHER n IJL_OTHER 1<=m<n X0..X(m-1), CC No & US if
X0..X(m-1), needed
IJL_OTHER n IJL_OTHER m=n X0..X(n-1), CC No & US if
X0..X(n-1), needed
IJL_OTHER n IJL_OTHER m>n X0..X(n- CC No & US if
1)En..E(m-1), needed
X0..X(n-
1)En..E(m-1),

Pre- and PostProcessing

Supportirg Legend:

Symbol Description

Y Luminance channel

Cb Cr chrominance channel (covering the red to blue-
green range)

Cr Cb chrominance channel (covering the blue to
yellow range)

R Red channel

G Green channel

B Blue channel

E Empty value (i.e., the existing memory contents
are not overwtitten)

(0] Opaque value (i.e., for 8-bhit samples, it equals
255)

X Any arbitrary channel value

CC Color Space Conversion

us Upsample

SS Subsample

Supportirg Notes:

1. Note thisisexacty thesameasthelJL_ Gto1JL_RG B case.

2. Pursuanto the FlashPx specificationthe pre-multiplied opacity is
preserved.

3. Pursuanto the FlashPx specificationan "inverseflip” (that is,
X =255-X")is performed and the pre-multiplied opacity is
preserved.

4. Startirg from versian 1.5, the IJL suppors1JL_YCBCR DIB color
spae (currently for DIBSubsamplin g =1JL_42 2 only). Decodirg is
implemente only for JPGSubsamplin g = 1JL_422.

Intel” JPEG Library Developer's Guide

6-10

Encoding and Pre-Processing Matrix

The following table illustrates permitted color space encoding
combinations and pre-processing options in the IJL.

Table 6-3 IJL Encoding and Pre-Processing Matrix

Format
DIB DIB JPEG JPEG of Encoded
Color Space Channels Color Space Channels Data Pre-Processing
JL_G 1 JL_G 1 Y, Y, ... CC No & SS No
JL_G 1 IJL_YCBCR 3 Y00, YOO, ... 1:1:1 CCNo & SS
(see note 1 No
below) 4:1:1 CCNo &SS
Yes
4:2:2 CCNo & SS
Yes
IJL_RGB 3 JL_G 1 Y, Y, ... CC Yes & SS No
IJL_RGB 3 IJL_RGB 3 RGB, RGB, ... 1:1:1 CCNo&SS
No
4:1:1 CCNo &SS
Yes
4:2:2 CCNo & SS
Yes

continued

Pre- and Post-Processing

Table 6-3 IJL Encoding and Pre-Processing Matrix ~ (continued)
Format
DIB DIB JPEG JPEG of Encoded
Color Space Channels Color Space Channels Data Pre-Processing
IJL_RGB 3 IJL_YCBCR 3 YCbCr, 1:1:1 CCYes &
YCbCr, ... SS No
4:1:1 CC Yes &
SS Yes
4:2:2 CC Yes &
SS Yes
IJL_RGB 4 IJL_YCBCR 3 YCbCr, 1:1:1 CCYes &
YCbCr, ... SS No
(see note 2 4:1:1 CCYes &
below) SS Yes
4:2:2 CC Yes &
SS Yes
IJL_BGR 3 L_G 1 Y, Y, .. CC Yes & SS No
IJL_BGR 3 IJL_RGB 3 RGB, RGB, ... 1:1:1 CCNo &SS
No
4:1:1 CCNo & SS
Yes
4:2:2 CCNo & SS
Yes
IJL_BGR 3 IJL_YCBCR 3 YCbCr, 1:1:1 CCYes &
YCbCr, ... SS No
4:1:1 CC Yes &
SS Yes
4:2:2 CC Yes &
SS Yes
IJL_YCBCR 3 IJL_YCBCR 3 YCbCr, 4:2:2 CC No &
YCbCr, ... SS Yes
(see note 5
below)
continued

6-11

Intel” JPEG Library Developer's Guide

6-12

Table 6-3 IJL Encoding and Pre-Processing Matrix ~ (continued)
Format
DIB DIB JPEG JPEG of Encoded
Color Space Channels Color Space Channels Data Pre-Processing
IJL_RGBA_FPX 4 IJL_RGBA_FPX 4 RGBA, RGBA, 1:1:1:1 CCNo &
SS No
(see note 3 4:1:1:4 CCNo &
below) SS Yes
4:2:2:4 CC No &
SS Yes
IJL_RGBA _FPX 4 IJL_YCBCRA_FPX 4 YCbCrA, 1:1:1:1 CCYes &
YCbCrA, ... SS No
(see note 4 4:1:1:4 CCYes &
below) SS Yes
4:2:2:4 CCYes &
SS Yes
IJL_OTHER n IJL_OTHER 1<=m<n X0..X(m-1), CC No &SSif
X0..X(m-1), needed
IJL_OTHER n IJL_OTHER m=n X0..X(n-1), CC No &SSiif
X0..X(n-1), needed

Pre- and Post-Processing

Supporting Legend:

Symbol Description

Y Luminance channel

Cb Cr chrominance channel (covering the red to blue-
green range)

Cr Cb chrominance channel (covering the blue to
yellow range)

R Red channel

G Green channel

B Blue channel

E Empty value (i.e., the existing memory contents
are not overwtitten)

(0] Opaque value (i.e., for 8-bit samples, it equals
255)

X Any arbitrary channel value

CC Color Space Conversion

us Upsample

SS Subsample

Supporting Notes:

1.

The luminance values are retained and the chrominance values are set
to zero.

Assumes no pre-multiplied opacity.

Pursuant to the FlashPix specification, the pre-multiplied opacity is
preserved.

Pursuant to the FlashPix specification, a "flip" (i.e., X' = 255 - X) is
performed and the pre-multiplied opacity is preserved.

The data encoding fromBColor =1JL_YCBCR t0

JPGColor =I1JL_YCBCR is currently supported only for

DIBSubsampling =1JL_422 .

6-13

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

Advanced IJL Features

This section describes some advanced features and imaging techniques that
are possible with the 1JL.

Use of Processor-Specific Code

The IJL detects the processor type and chooses the best available
processor-specific code automatically (this is the default option). For
example, if you use IJL on a system with Intel® Pentium® 4 processor, the
library will take advantage of the code that has been specially optimized
for that processor type.

However, you can direct the library to use the required code version by
setting the USECPU key in the system registry to one of the following

values:

0 - Blended code must be used (option for all legacy processors)
4 - Code optimized for Pentium Il processor must be used

5 - Code optimized for Pentiumhi processor must be used

6 - Code optimized for Pentium 4 processor must be used

The USECPU key has the type DWORD and must be located at
HKEY_LOCAL_MACHINE\Software\intel Corporation\PLSuite\lJLib.

Setting the DCT Algorithm

The IJL supports two different DCT algorithms. The first one, set by
IJL_AAN field value, is based on the work of Arai et al., séedi]. This
algorithm is quite fast but has limited accuracy.

The second algorithm, which provides sufficient speed and higher
accuracy, was derived from the Intel Integrated Performance Primitives for

7-1

Intel” JPEG Library Developer's Guide

Intel architecture. This is a default option, set after a caillita()

To use the previous version of the DCT algorithm, set the
jcprops.jprops.dcttype field in JPEG_CORE_PROPERTIEStructure to
IJL_AAN . This setting must be done after callifigit() , but prior to
first call toijlRead() orijlwrite()

Writing and Reading of JPEG Comment Block

Two new fields in theJPEG_CORE_PROPERTIEStructure have been
introducedjpeg_comment is the pointer to a comment string, and
jpeg_comment_size is the length in bytes of the comment string,

including trailing zero. When IJL initialization takes place, these fields are
set to 0. It means that the following predefined comment string will be
inserted by the IJL while encoding data: “Intel® JPEG Library,
[<version>]". If you need to insert your own comment for encoded data
instead, set the pointer to the comment string and specify the length of the
string. Similarly, to extract the comment from JPEG data while decoding,
you should set the pointer to the comment buffer and specify the buffer
size. If the comment string was successfully read and placed into the
buffer, this field will be set to the number of bytes written into the buffer.

In case the buffer has insufficient size, the IJL will write data until the
buffer is full, and then return the error codé_ ERR_COM_BUFFER

If no comment string is present in JPEG data, the IJL will not change either
buffer contents or the buffer size field.

The application program must both allocate and free memory for the
comment string buffer.

Custom JPEG Tables

The IJL allows user-specified Huffman and quantization tables for specific
authoring requirements. These tables are specified via entries in the
JPEG_PROPERTIES]ata structure.

Advanced IJL Features

Custom Quantization Tables

The IJL can accept up to four custom quantization tables for authoring
JPEG images. Quantization tables are specified in the IJL as an 8x8 array
of 8-bit unsigned char entries in normal row-major, or non-zig-zagged,
form. By default, the standard quantization tables are used in the 1JL JPEG
encoding procedures and are described as follows:

static unsigned char DefaultLuminanceQuantTbl[] =
{
16, 11, 12, 14, 12, 10, 16, 14,
13, 14, 18, 17, 16, 19, 24, 40,
26, 24, 22, 22, 24, 49, 35 37,
29, 40, 58, 51, 61, 60, 57, 51,
56, 55, 64, 72, 92, 78, 64, 68,
87, 69, 55, 56, 80, 109, 81, 87,
95, 98, 103, 104, 103, 62, 77, 113,
121, 112, 100, 120, 92, 101, 103, 99
h
static unsigned char DefaultChrominanceQuantTbl[] =
{
17, 18, 18, 24, 21, 24, 47, 26,
26, 47, 99, 66, 56, 66, 99, 99,
99, 99, 99, 99, 99, 99, 99, 099,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 099,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
h
Each quantization factor is adjusted within IJL by a quality level multiplier
and used to divide the input data to reduce its precision (and hence its
storage size). The entries in the quantization arrays correspond to
multipliers applied to certain spatial frequencies within the image. The

lowest-order (DC) component is located in the upper-left hand corner.

The following code illustrates adding custom quantization tables prior to
authoring a JPEG image.

7-3

Intel® JPEG Library Developer’s Guide

7-4

Il
/I An example using the IntelR JPEG Library:

/I -- Author a JPEG image using custom quantization tables.
I

/I Your special quantization table goes here!

static BYTE HQLumQuantTable[] =

{
16, 11, 12, 14, 12, 10, 16, 14,
13, 14, 18, 17, 16, 19, 24, 40,
26, 24, 22, 22, 24, 49, 35, 37,
29, 40, 58, 51, 61, 60, 57, 51,
56, 55, 64, 72, 92, 78, 64, 68,
87, 69, 55, 56, 80, 109, 81, 87,
95, 98, 103, 104, 103, 62, 77, 113,
121, 112, 100, 120, 92, 101, 103, 99

k

/I Your special quantization table goes here!

static BYTE HQChromQuantTable[] =

{
17, 18, 18, 24, 21, 24, 47, 26,
26, 47, 99, 66, 56, 66, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99

BOOL EncodeJPGFileWithCustomQuantization(
LPCSTR IpszPathName,
DWORD width,
DWORD height,
DWORD nchannels,
BYTE* pixel_buf)

BOOL bres;
IJLERR jerr;

Advanced IJL Features

/I Allocate the 1IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIE§props;

bres = TRUE;
_try
{
/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}

/I Set the custom quantization tables. For this example we

/I assign two custom tables, although up to four are possible.
/I Here we also assume the tables specify luminance and

/I chrominance quantization factors (as in a YCbCr image).
jcprops.jprops.maxquantindex = 2;

jcprops.jprops.nqtables = 2;

jcprops.jprops.rawquanttables[0].quantizer = HQLumQuantTable;
jcprops.jprops.rawquanttables[0].ident = 0;
jcprops.jprops.rawquanttables[1].quantizer = HQChromQuantTable;
jcprops.jprops.rawquanttables[1].ident = 1;

/I Now that we have assigned the tables, we need to decide which
/I color channels of the authored image will use which tables.

/I The ident member of rawquanttables specifies a unique

/I identifier for each table; we reference the quant_sel member of
/Il each frame (image) component to this identifier.

jcprops.jprops.jframe.comps[0].quant_sel = O;
jcprops.jprops.jframe.comps[1].quant_sel = 1;
jcprops.jprops.jframe.comps| 2].quant_sel = 1;
jcprops.jprops.jframe.comps[3].quant_sel = 1;
jcprops.DIBWidth = width;

jcprops.DIBHeight = height;

jcprops.DIBChannels = nchannels; // nchannels MUST BE 3!
jcprops.DIBColor = IJL_BGR,;

jcprops.DIBBytes = pixel_buf;

7-5

Intel” JPEG Library Developer's Guide

jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

/I Specify JPEG file creation parameters.
jcprops.JPGWidth = width;
jcprops.JPGHeight = height;

/I Note: the following are default values and thus
/Il do not need to be set.

/I jeprops.JPGChannels = 3;
/I jcprops.JPGColor = IJL_YCBCR;
Il jeprops.JPGSubsampling = 1JL_411; // 4:1:1 subsampling.
/I jcprops.jquality = 75; /I Select "good" image quality
/I Write the actual JPEG image from the pixel buffer.
jerr = ijlWrite (&jcprops, WL_JFILE_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}
Y Ity
_ finally

/I Clean up the IntelR JPEG Library.
ijIFree (&jcprops);
}

return bres;
} /I EncodeJPGFileWithCustomQuantization()

The 1JL formats the quantization tables for internal use before authoring
any data. Thus, the tables that are passed to the 1JL only need to persist as
long as the first call tgiwrite()

Advanced IJL Features

Custom Huffman Tables

The IJL accepts up to four sets of user-specified Huffman tables per
authored image. Huffman tables are used to determine the entropy codes
used in the run-length coding portion of the JPEG encoding process.

Huffman tables are specified in pairs: one table for each the DC and AC
frequency components in an image channel. Each Huffman table requires
two structures, one representing the bits required for each symbol, and one
with the actual symbol values. The data format within each of these
structures is identical to that of the embedded Huffman tables per the JPEG
specification.

The following code illustrates image authoring using custom Huffman
tables.

Il
/I An example using the IntelR JPEG Library:

/Il -- Author a JPEG image using custom Huffman tables.
1l

/I Your special Huffman DC Symbol Length table goes here!
static BYTE CustomLuminanceDCBIts[] =
{

0x00, 0x01, 0x05, 0x01, 0x01, Ox01, Ox01, 0Ox01,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

%

/I Your special Huffman DC Symbol table goes here!
static BYTE CustomLuminanceDCValues[] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b

h

/I Your special Huffman DC Symbol Length table goes here!
static BYTE CustomChrominanceDCBIts[] =
{

0x00, 0x03, 0x01, 0x01, Ox01, Ox01, Ox01, 0Ox01,

0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00

7-7

Intel® JPEG Library Developer’s Guide

h

/I Your special Huffman DC Symbol table goes here!
static BYTE CustomChrominanceDCValues[] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0xOa,
0x0b

h

/I Your special Huffman AC Symbol Length table goes here!
static BYTE CustomLuminanceACBits[] =
{

0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03,

0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, Ox7d

g

/I Your special Huffman AC Symbol table goes here!

static BYTE CustomLuminanceACValues[] =

{
0x01, 0x02, 0x03, 0x00, 0x04, 0Ox11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0Ox51, 0x61, 0x07,
0x22, 0x71, Ox14, 0x32, 0x81, 0x91, Oxal, 0x08,
0x23, 0x42, 0xbl, Oxcl, 0x15, 0x52, Oxdl, 0xfO,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, Oxla, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
Ox3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
Ox4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
Ox6a, 0x73, 0x74, 0x75, 0x76, Ox77, 0x78, 0x79,
Ox7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0Ox8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, Oxa2, Oxa3, Oxa4, Oxab5, Oxa6, Oxa7,
0Oxa8, 0xa9, Oxaa, Oxb2, 0xb3, 0xb4, 0xb5, O0xb6,
0Oxb7, 0xb8, 0xb9, Oxba, Oxc2, 0xc3, 0xc4, 0xcb,
0xc6, 0xc7, 0xc8, 0xc9, Oxca, 0xd2, 0xd3, Oxd4,
0xd5, 0xd6, Oxd7, 0xd8, 0xd9, Oxda, Oxel, Oxe2,
Oxe3, Oxe4, Oxeb5, Oxe6, Oxe7, Oxe8, 0xe9, Oxea,
Oxfl, Oxf2, Oxf3, Oxf4, Oxf5, Oxf6, 0xf7, Oxf8,
0xf9, Oxfa

Advanced IJL Features

/I Your special Huffman AC Symbol Length table goes here!
static unsigned char CustomChrominanceACBIts[] =
{

0x00, 0x02, 0x01, O0x02, 0Ox04, 0x04, 0x03, 0x04,

0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, Ox77

k

/I Your special Huffman AC Symbol table goes here!

static unsigned char CustomChrominanceACValues[] =

{
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, Ox71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
Oxal, Oxbl, Oxcl, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xdl, Ox0Oa, Ox16, 0x24, 0x34,
Oxel, 0x25, Oxfl, Ox17, O0x18, 0x19, Oxla, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, Ox4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, Oxba, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, Ox6a, 0x73, 0x74, 0x75, 0x76, 0x77, Ox78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, Oxa2, 0xa3, Oxa4, 0xab,
Oxa6, Oxa7, Oxa8, 0xa9, Oxaa, Oxb2, 0xb3, 0xb4,
0xb5, 0xb6, Oxb7, 0xb8, 0xb9, Oxba, 0xc2, 0xc3,
0Oxc4, 0xc5, 0xc6, Oxc7, 0xc8, 0xc9, Oxca, 0xd2,
0xd3, 0xd4, 0xd5, Oxd6, Oxd7, 0xd8, 0xd9, Oxda,
0Oxe2, 0xe3, Oxe4, Oxeb5, Oxe6, Oxe7, 0xe8, 0xe9,
Oxea, 0xf2, 0xf3, Oxf4, Oxf5, Oxf6, Oxf7, Oxf8,
0xf9, Oxfa

BOOL EncodeJPGFileWithCustomHuffman(
LPCSTR IpszPathName,
DWORD width,
DWORD height,
DWORD nchannels,
BYTE* pixel_buf)

BOOL bres;

Intel® JPEG Library Developer’s Guide

7-10

IJLERR jerr;

/I Allocate the 1IJL JPEG_CORE_PROPERTIES structure.
JPEG_CORE_PROPERTIE&props;

bres = TRUE;
_try
{
/I Initialize the IntelR JPEG Library.
jerr = ijlinit (&cprops);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}

/I Set the custom Huffman tables. For this example, we

/I assign two sets of custom tables, though up to four are

/I possible. We also assume the tables specify luminance and
/I chrominance Huffman factors (as in a YCbCr image).

jcprops.jprops.nhuffActables = 2;
jcprops.jprops.nhuffDctables = 2;
jcprops.jprops.maxhuffindex = 2;

jcprops.jprops.rawhufftables[0].bits ustomLuminanceDCBits;
jcprops.jprops.rawhufftables[0].vals = CustomLuminanceDCValues;
jcprops.jprops.rawhufftables[0O].hclass = 0;
jcprops.jprops.rawhufftables[0O].ident = 0;
jcprops.jprops.rawhufftables[1].bits ustomLuminanceACBiIts;
jcprops.jprops.rawhufftables[1].vals = CustomLuminanceACValues;
jcprops.jprops.rawhufftables[1].hclass = 1;
jcprops.jprops.rawhufftables[1].ident = 0;
jcprops.jprops.rawhufftables[2].bits = CustomChrominanceDCBiIts;
jeprops.jprops.rawhufftables[2].vals = CustomChrominanceDCValues;
jcprops.jprops.rawhufftables[2].hclass = 0;
jcprops.jprops.rawhufftables[2].ident = 1;
jcprops.jprops.rawhufftables| 3].bits ustomChrominanceACBiIts;
jcprops.jprops.rawhufftables[3].vals = CustomChrominanceACValues;
jcprops.jprops.rawhufftables[3].hclass = 1;
jcprops.jprops.rawhufftables[3].ident = 1;

/I Now that we have assigned the tables, we need to decide which

Advanced IJL Features

/I channels of the authored image will use which tables.

/I The ident member of rawhufftables specifies a unique

/I identifier for each table; we reference the Huffldentifier

/I member of each image (which applies to each component in
/I increasing order) to this identifier.
jeprops.jprops.HuffldentifierAC[0]
jcprops.jprops.HuffldentifierDC[0]
jcprops.jprops.HuffldentifierAC[1]
jcprops.jprops.HuffldentifierDC[1]
jcprops.jprops.HuffldentifierAC[2]
jcprops.jprops.HuffldentifierDC[2]
jcprops.jprops.HuffldentifierAC[3]
jcprops.jprops.HuffldentifierDC[3]

0
0
1
1
1
1
1
1

jcprops.DIBWidth
jcprops.DIBHeight
jcprops.DIBChannels
jcprops.DIBColor
jcprops.DIBBytes

width;

height;

nchannels; // only 3 is valid
IJL_BGR,;

pixel_buf;

/I Specify JPEG file creation parameters.
jcprops.JPGWidth = width;
jcprops.JPGHeight = height;

jcprops.JPGFile = const_cast<LPSTR>(IpszPathName);

/I Note: the following are default values and thus
/I do not need to be set.

/I jeprops.JPGChannels = 3;
/I jcprops.JPGColor = IJL_YCBCR;
/I jcprops.JPGSubsampling = 1JL_411; // 4:1:1 subsampling.
/I jcprops.jquality = 75; /I Select "good" image quality
/I Write the actual JPEG image from the pixel buffer.
jerr = ijlWrite (&cprops, IJL_JFILE_WRITEWHOLEIMAGE);
if(IJL_OK != jerr)
{
bres = FALSE;
__leave;
}
Y I __try

7-11

Intel” JPEG Library Developer's Guide

7-12

/I Clean up the IntelR JPEG Library.

(&jcprops);

} /I EncodeJPGFileWithCustomHuffman()

The IJL formats the Huffman tables for internal use before authoring any
data. Thus, the tables passed to the IJL only need to persist as long as the
first call toijlwrite()

Extended Baseline Decoding

This section describes techniques to persist formatted table information
across multiple 1JL accesses to minimize table processing and memory
overhead.

Many image file formats separate the header, table, and entropy
information of a JPEG stream. Some tile based formats, like FlashPix, may
separate an image into tiles, each of which references JPEG tables stored
elsewhere in the file. Optimal decoding requires that the table information
is not processed for each tile in an image, rather the decoder formatted
tables should bpersisted Persistence requires that after the Huffman
and/or quantization tables are decoded and formatted, their formatted
representation needs to be stored external to the IJL. Before an image is
decoded, the formatted tables are then copied back into the appropriate
locations within thelPEG_PROPERTIESstructure.

For more information please refer to the white paper titlésing the 1JL
with JPEG Compressed FlashPix Files”

TheHUFFMAN_TABLRNAQUANT _TABLEStructures contain Huffman and
quantization tables in the proper decoder format. These tables are located
within JPEG_PROPERTIESS specified in the following fragment:

Advance IJL Features

[T L T T
/1 ... a code fragmen t fro mth e JPEG_PROPERTIE dat a structur e ...
T L T |
/| Tables
DWOR nqtables;
DWOR maxquantindex;
DWOR nhuffActables;
DWOR nhuffDctables;
DWOR maxhuffindex;
QUANT_TABE jFmtQuant[4];
HUFFMAN_TABE jFmtAcHuffman[4];
HUFFMAN_TABE jFmtDcHuffman(4];
short * jEncFmtQuant[4];
HUFFMAN_TABE *[EncFmtAcHuffman[4];
HUFFMAN_TABE *EncFmtDcHuffman[4];

/1 Allo w user-define d tables.

DWOR use_default_htables;

DWOR use_default_gtables;

JPEGQuantTabl e rawquanttables[4];

JPEGHUuffTabl e rawhufftables[8];

BYTE HuffldentifierAC[4];

BYTE HuffldentifierDC[4];
The importart membes for table persistene are jFmtQuant
jFmtAcHuffman , and jFmtDcHuffman . After decodirg the tables using

1JL_JIXXXX_READHEADERcoOpy them to your persisté storage.

Next, to decock a JPES bit strean (which isat a minimum assuned to be
in the Abbreviatel Formd for compresseimage data) the use copiesthe
formatted tables bad into the JPEG_PROPERTIE membes and calls
ijlRead () with1JL_JXXXX_READWHOLEIMAGE

Copying the persisté tablesto JPEG_PROPERTIE is typically much faster
than appendig atable strean to the front of ead JPES data strean and
forcing the decode to proces ard format the tables at evewy call.

References

[Arai] Arai, Agui, and Nakajima, Trans. IEICE, vol. E 71(11),
pp. 1095-1097, Nov. 1988.

7-13

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

Glossary of Terms

For purposes of this document, the following definitions apply.

Abbreviated Format (for compressed image data)- This format is
identical to the Interchange Format, except that it may or may not include
all tables required for decoding. This format is intended for use within
applications where alternative mechanisms are available for supplying
some or all of the table specification data needed for decoding.

Abbreviated Format (for table specification data)— This format

contains only table specification data. Itis a means by which the
application may install in the decoder the tables required to subsequently
reconstruct one or more images.

Baseline Mode- (a.k.asequential DCT-based mod®ne of the four

main categories of image compression processes defined by JPEG. This
mode is the simplest DCT-based JPEG encoding and decoding process, and
represents a minimum capability that must be present in all DCT-based
JPEG decoders. Image components are compressed either individually or
in groups in a single scan. Here is a summary of its essential
characteristics:

 DCT-based process

e Source image: 8-bit samples within each component

¢ Sequential

¢ Huffman coding: 2 AC and 2 DC tables

e Decoders shall process scans with 1, 2, 3, and 4 components

* Interleaved and non-interleaved scans

Bit Stream - A partially encoded or decoded sequence of bits comprising
an entropy-coded segment.

A-1

Intel” JPEG Library Developer's Guide

A-2

Channel- (a.k.a.componentA single color component of an image. An
RGB image has 3 channels, a RGBA image has 4 channels, and a
Grayscale image has only 1 channel.

Compressed Data- Either compressed image data or table specification
data or both.

Compressed Image Data- A coded representation of an image as
specified by the JPEG specification.

Continuous-tone Image— An image whose components have more than
one bit per sample.

DCT — (Discrete @sine_Transform) A mathematical transformation using
cosine basis functions which converts a block of samples into a
corresponding array of basis function amplitudes.

DIB - (Device_hdependent Bmap) A pixel buffer where the image data is
stored in a byte interleaved form, one byte (8-bits) per channel. The most
common type is the Windows 24-bit DIB.

Entropy Coding — A lossless procedure that converts a sequence of input
symbols into a sequence of bits such that the average number of bits per
symbol approaches the entropy of the input symbols.

Extended Baseline Mode A sequential DCT-based encoding and
decoding process in which additional capabilities are added beyond the

Baseline mode. This mode extends the Baseline mode to a broader range of

applications. Here is a summary of its essential characteristics:
DCT-based process
Source image: 8-bit or 12-bit samples
Sequential or progressive
Huffman or arithmetic coding: 4 AC and 4 DC tables
Decoders shall process scans with 1, 2, 3, and 4 components
Interleaved and non-interleaved scans

Glossary of Terms ‘ \

Grayscale Image— A continuous-tone image that has only one component.

Horizontal Sampling Factor — The relative number of horizontal data
units of a particular component with respect to the number of horizontal
data units in the other components.

Huffman Table — The set of variable length codes required in the Huffman
coding process.

Huffman Coding — An entropy coding procedure that assigns a variable
length code to each input symbol.

IJL - (Intel® JPEG Library) The 1JL is a software library for application
developers that provides high performance JPEG encoding and decoding of
full color, and grayscale, stillimages. The IJL was developed to take
advantage of MMX™ technology if present.

Interchange Format — (a.k.a. JPEG Interchange Format or JIF) A JPEG
compressed image data bit stream that includes all tables that are required
by the decoder (i.e., Huffman and quantization tables).

Interleaved — The descriptive term applied to the repetitive multiplexing
of small groups of data units from each component in a scan in a specific
order.

JFIF - (JPEG_He Interchange &rmat) A minimal file format which
enables JPEG bit streams to be exchanged between a wide variety of
platforms and applications. The JFIF is entirely compatible with the
standard JPEG Interchange Format.

JPEG - (Joint_ Fhotographic Eperts Goup) Usually refers to ISO DIS
10918-1 and 10918-2, “Digital compression and coding of continuous-tone
still images", the compression standard this group created.

Lossless- A descriptive term for encoding and decoding processes and
procedures in which the output of the decoding procedure(s) is identical to
the input to the encoding procedure(s).

Lossy— A descriptive term for encoding and decoding processes which are
not lossless.

A-3

Intel” JPEG Library Developer's Guide

MCU - (Minimum Coded _Lhit) The minimal set of data written to a
compressed JPEG stream. The MCU is, for DCT-based JPEG coding
processes, a set of rectangular regions over several channels representing
the same pixel-based region. Itis always a multiple of 8 pixels wide and
high. Subsampling various color components of an image generates MCUs
with dimensions greater than 8 x 8 pixels. For example, common 4:1:1
subsampled JPEG images have a 16 x 16 pixel MCU.

Non-Interleaved — The descriptive term applied to the data unit processing
sequence when the scan has only one component.

Pixel Buffer - A rectangular array of pixels with each pixel having the

same number of component values (color channels). The number of
components and the color space interpretation of the components are also
required.

Pre-Processing- The act of applying various operations to an image prior
to sending it to the JPEG encoder. These operations typically include color
space conversion and subsampling.

Post-Processing- The act of applying various operations to an image after
receiving it from the JPEG decoder. These operations typically include
upsampling and inverse color space conversion.

Progressive Mode- One of the four main categories of image
compression processes defined by JPEG. This mode is a DCT-based
coding process that is achieved by a sequence of scans, each of which
codes part of the quantized DCT coefficient information.

Quantization - A lossy procedure in which the DCT coefficients are
linearly scaled in order to achieve compression.

Quantization Table — The set of 64 integer values used to quantize the
DCT coefficients.

Restart Interval — The integer number of MCUs processed as an
independent sequence within a scan.

Glossary of Terms

ROI - (Rectangle-Blnterest) A particular rectangular region of the image
which can be specified by (top, left) and (bottom, right) pixel coordinates.
The ROI must be contained within the image, but may encompass the total
image.

Scan-— A single pass through the data for one or more of the components in
an image.

Subsampling— (a.k.a. Downsampling) A procedure by which the spatial
resolution of an image is reduced.

Table Specification Data— The coded representation from which the
tables used in the encoder and decoder are generated.

Upsampling— A procedure by which the spatial resolution of an image is
increased.

Vertical Sampling Factor — The relative number of vertical data units of a
particular component with respect to the number of vertical data units in
the other components.

Zig-Zag Sequence- A specific sequential ordering of the DCT
coefficients from (approximately) lowest spatial frequency to highest.

A-5

This pageisintentionally left blank. Needed for two-sided printing.

This pageisintentionally left blank. Needed for two-sided printing.

Data Structure and
Type Definitions

For purposes of this document, the following definitions apply and are
meant to be consistent with the IJL header filen(). If there are
inconsistencies, the header file should always take precedence.

JPEG_CORE_PROPERTIES

[*D*
M T

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Name: JPEG_CORE_PROPERTIES

Purpose: This is the primary data structure between the IJL and
the external user. It stores JPEG state information
and controls the 1JL. It is user-modifiable.

See the Developer's Guide for details on appropriate usage.

Context: Used by all low-level IJL routines to store
pseudo-global information.

Fields:
UseJPEGPROPERTIES Set this flag '= 0 if you wish to override
the JPEG_CORE_PROPERTIES "IN" parameters with
the JPEG_PROPERTIES parameters.

DIBBytes IN: Pointer to buffer of uncompressed data.
DIBWidth IN: Width of uncompressed data.
DIBHeight IN: Height of uncompressed data.
DIBPadBytes IN: Padding (in bytes) at end of each

row in the uncompressed data.
DIBChannels IN: Number of components in the

uncompressed data.

B-1

Intel® JPEG Library Developer’s Guide

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

DIBColor
DIBSubsampling

JPGFile
JPGBytes
JPGSizeBytes
JPGWidth
JPGHeight
JPGChannels

JPGColor
JPGSubsampling

JPGThumbWidth
JPGThumbHeight

cconversion_reqd

upsampling_reqd
jquality

jprops

IN:
IN:

IN:
IN:
IN:

OUT:

IN:

OUT:

IN:

OUT:

IN:

OUT:

IN:
IN:

OUT:

OUT:
OUT:

OUT:

OUT:
IN:

Color space of uncompressed data.
Required to be IJL_NONE.

Pointer to file based JPEG.
Pointer to buffer based JPEG.
Max buffer size. Used with JPGBytes.
Number of compressed bytes written.
Width of JPEG image.
After reading (except READHEADER).
Height of JPEG image.
After reading (except READHEADER).
Number of components in JPEG image.
After reading (except READHEADER).
Color space of JPEG image.
Subsampling of JPEG image.
After reading (except READHEADER).
JFIF embedded thumbnail width [0-255].
JFIF embedded thumbnail height [0-255].

If color conversion done on decode,

TRUE.
If upsampling done on decode, TRUE.

[0-100] where highest quality is 100.

"Low-Level" IJL data structure.

HHHHTH T T T T T T

1l
D/

struct JPEG_CORE_PROPERTIES

{

B-2

DWORD UseJPEGPROPERTIES;

/I default = 0

/I DIB specific I/O data specifiers.

BYTE *DIBBytes;
DWORD DIBWidth;

int DIBHeight;

DWORD DIBPadBytes;
DWORD DIBChannels;
IJL_COLOR DIBColor;

IJL_DIBSUBSAMPLING DIBSubsampling;

/I default = NULL

/I default = 0
/I default = 0

/I default = 0

/I default = 3

/I default = IJL_BGR
/I default = 1IJL_NONE

Data Structure and Type Definitions

/I JPEG specific /O data specifiers.

char *JPGFile; /I default = NULL

BYTE *JPGBytes; /I default = NULL
DWORD JPGSizeBytes; /I default = 0
DWORD JPGWidth; /I default = 0
DWORD JPGHeight; /I default = 0
DWORD JPGChannels; /I default = 3
IJL_COLOR JPGColor; /I default = 1JL_YCBCR
IJL_JPGSUBSAMPLING JPGSubsampling; // default = IJL_411
DWORD JPGThumbWidth; /I default = 0
DWORD JPGThumbHeight; /I default = 0
/I JPEG conversion properties.

DWORD cconversion_reqd; /I default = TRUE
DWORD upsampling_reqd; /I default = TRUE
DWORD jquality; /I default = 75

/I Low-level properties.
JPEG_PROPERTIES jprops;

B-3

Intel® JPEG Library Developer’s Guide

Supporting Type Definitions

#define IJL_NONE 0
#define 1IJL_OTHER 255

[*D*

o

1l

/I Name: 1JLIOTYPE

1l

/I Purpose: Possible types of data read/write/other operations to be
/I performed by the functions ijlRead and ijlWrite.

1l

/I See the Developer's Guide for details on appropriate usage.

1l

/I Fields:

1l

/I 1IL_JFILE_XXXXXXX Indicates JPEG data in a stdio file.

1

/I 1JL_JBUFF_XXXXXXX Indicates JPEG data in an addressable buffer.
1l

o

1l

D/

typedef enum

{
IJL_SETUP = -1,

/I Read JPEG parameters (i.e., height, width, channels,
/I sampling, etc.) from a JPEG bit stream.
IJL_JFILE_READPARAMS = 0,
IJL_JBUFF_READPARAMS = 1,

/I Read a JPEG Interchange Format image.
IJL_JFILE_READWHOLEIMAGE = 2,
IJL_JBUFF_READWHOLEIMAGE = 3,

/I Read JPEG tables from a JPEG Abbreviated Format bit stream.
IJL_JFILE_READHEADER = 4,
IJL_JBUFF_READHEADER = b5,

Data Structure and Type Definitions

/I Read image info from a JPEG Abbreviated Format bit stream.
IJL_JFILE_READENTROPY = 6,
IJL_JBUFF_READENTROPY = 7,

/I Write an entire JFIF bit stream.
IJL_JFILE_WRITEWHOLEIMAGE = 8,
IJL_JBUFF_WRITEWHOLEIMAGE = 9,

/I Write a JPEG Abbreviated Format bit stream.
IJL_JFILE_WRITEHEADER = 10,
IJL_JBUFF_WRITEHEADER = 11,

/I Write image info to a JPEG Abbreviated Format bit stream.
IJL_JFILE_WRITEENTROPY = 12,
IJL_JBUFF_WRITEENTROPY = 13,

/I Scaled Decoding Options:
/I Reads a JPEG image scaled to 1/2 size.
IJL_JFILE_READONEHALF = 14,

IJL_JBUFF_READONEHALF = 15,

/I Reads a JPEG image scaled to 1/4 size.

IJL_JFILE_READONEQUARTER = 16,
IJL_JBUFF_READONEQUARTER = 17,
/I Reads a JPEG image scaled to 1/8 size.
IJL_JFILE_READONEEIGHTH = 18,
IJL_JBUFF_READONEEIGHTH = 19,

/I Reads an embedded thumbnail from a JFIF bit stream.
IJL_JFILE_READTHUMBNAIL = 20,
IJL_JBUFF_READTHUMBNAIL =21

} JLIOTYPE;

M T T

B-5

Intel® JPEG Library Developer’s Guide

1
1
1
1
1
1
1
1
1
1
1
1
1

Name: [|JL_COLOR
Purpose: Possible color space formats.

Note these formats do *not* necessarily denote

the number of channels in the color space.

There exists separate "channel" fields in the
JPEG_CORE_PROPERTIES data structure specifically
for indicating the number of channels in the

JPEG and/or DIB color spaces.

See the Developer's Guide for details on appropriate usage.

HHHHTH T T T T T

1

D/
typedef enum
{
IJL_RGB = 1, /I Red-Green-Blue color space.
IJL_BGR = 2, /I Reversed channel ordering from IJL_RGB.
IJL_YCBCR = 3, /I Luminance-Chrominance color space as
/I defined by CCIR Recommendation 601.
JL_G = 4, /I Grayscale color space.
IJL_RGBA_FPX =5, [/ FlashPix RGB 4 channel color space that
/I has pre-multiplied opacity.
IJL_YCBCRA_FPX = 6,// FlashPix YCbCr 4 channel color space that
/I has pre-multiplied opacity.
1l IJL_OTHER /I Some other color space not defined by
/I the IJL. This means no color space
/I conversion will be done by the IJL.
} UL_COLOR,;
[*D*

HHHHH T T T T T T

1
I
I
I

B-6

Name: 1JL_JPGSUBSAMPLING

Purpose: Possible subsampling formats used in the JPEG.

Data Structure and Type Definitions

I

/I See the Developer's Guide for details on appropriate usage.
I

o

I

D/
typedef enum
{

IJL_411 = 1, /I Valid on a JPEG w/ 3 channels.

IJL_422 = 2, /I Valid on a JPEG w/ 3 channels.

IJL_4114 = 3, /I Valid on a JPEG w/ 4 channels.

IJL_4224 = 4 /I Valid on a JPEG w/ 4 channels.
Il 1IJL_NONE /I Corresponds to "No Subsampling”.

/I Valid on a JPEG w/ any number of channels.

1l IJL_OTHER /I Valid entry, but only used internally to

/I the 1JL.

} JL_JPGSUBSAMPLING;

;//53//

Z Name: [|JL_DIBSUBSAMPLING

Z Purpose: Possible subsampling formats used in the DIB.

Z See the Developer's Guide for details on appropriate usage.
Z///

‘o

typedef enum

{
Il 1IJL_NONE = Corresponds to "No Subsampling".

} UL_DIBSUBSAMPLING;

B-7

Intel® JPEG Library Developer’s Guide

B-8

Return Error Codes

;//53//

Z Name: [|JLERR

Z Purpose: Listing of possible "error" codes returned by the IJL.
Z See the Developer's Guide for details on appropriate usage.

Z Context: Used for error checking.
Z///

1

D/

typedef enum

{
/I The following "error" values indicate an "OK" condition.
IJL_OK = 0,
IJL_INTERRUPT_OK = 1,
IJL_ROI_OK = 2

/I The following "error" values indicate an error has occurred.

IJL_EXCEPTION_DETECTED = -1,
IJL_INVALID_ENCODER = -2
IJL_UNSUPPORTED_SUBSAMPLING = -3
IJL_UNSUPPORTED_BYTES_PER _PIXEL = -4,
IJL_MEMORY_ERROR = 5
IJL_BAD_HUFFMAN_TABLE = -6,
IJL_BAD_QUANT _TABLE = 7,
IJL_INVALID_JPEG_PROPERTIES = -8
IJL_ERR_FILECLOSE = 9
IJL_INVALID_FILENAME = -10,
IJL_ERROR_EOF = -11,
IJL_PROG_NOT_SUPPORTED = -12,
IJL_ERR_NOT_JPEG = -13,
IJL_ERR_COMP = -14,
IJL_ERR_SOF = -15,
IJL_ERR_DNL = -16,
IJL_ERR_NO_HUF = -17,
IJL_ERR_NO_QUAN = -18,

Data Structure and Type Definitions

IJL_ERR_NO_FRAME = .19,
IJL_ERR_MULT_FRAME = .20,
IJL_ERR_DATA = 21,
IJL_ERR_NO_IMAGE = 22
IJL_FILE_ERROR = 23,
IJL_INTERNAL_ERROR = 24,
IJL_BAD_RST_MARKER = .25,
IJL_THUMBNAIL_DIB_TOO_SMALL = .26,
IJL_THUMBNAIL_DIB_WRONG_COLOR = -27,
IJL_BUFFER_TOO_SMALL = .28,
IJL_UNSUPPORTED_FRAME = 29,
IJL_ERR_COM_BUFFER = 30,
IJL_RESERVED = .99

} WJLERR;

B-9

Intel” JPEG Library Developer's Guide

[JLibVersion Structure

/*D*

Tl

/I Name: IJLibVersion

Il

/I Purpose: Stores library version info.
Il

/I Context:

Il

/I Example:

1l major -1

Il minor -0

Il build -1

/I Name - "jlzo.dn”

Il Version - "1.0.1 Betal"
Il InternalVersion - "1.0.1.1"

Il BuildDate - "Sep 22 1998"
/I CallConv - "DLL"

Il

i

D/

typedef struct _lJLibVersion

{
int major;
int minor;
int build;

LPCSTR Name;
LPCSTR Version;
LPCSTR InternalVersion;
LPCSTR BuildDate;
LPCSTR CallConv;

} JLibVersion;

B-10

Frequently Asked
Questions

Q: I have a top-to-bottom image. Can IJL handle this type of DIBs?

A: Yes, the IJL supports both top-down and bottom-up image orientations
for encoding. If an image file has bottom-up orientation, you need just to
specify a negative value for theBHeight field in the
JPEG_CORE_PROPERTIEStructure. Note that JPEG data format defines
only the top-down image orientation; thus, tiesHeight field must

always contain a positive value.

Q: Does IJL have a resize capability (I have a 600x400 DIB and | want to
write a 300x200 JPEG image)?

A: The IJL supports scaled decoding mode to decode an image at 1/2, 1/4,
or 1/8 of initial size. There is no provision in 1JL for resizing an image

while encoding. You can udetel® Image Processing Libraty resize a
source image.

Q: I'would like to use the DC and AC coefficients to check similarity of
two JPEG images. Is it possible to retrieve the coefficients with the 1JL?

A: The I1JL does not currently support raw DCT coefficients retrieval.

Q: Can you provide any information on a new version of your JPEG library
that will support scanline based encoding? For our company’s applications,
having access to the entire bitmap for encoding is impractical. In some
cases, our software deals with images that are hundreds of megabytes.

A: You can use interrupted encoding and decoding capability, which is
supported by the IJL. See code examples in this mamedoding an
Image Row by RoyandEncoding by One MCU at a Time

C-1

http://developer.intel.com/vtune/perflibst

	Intel JPEG Library Developer's Guide
	How to Use This Guide
	Revision History
	Legal Information
	Contents
	1. Overview
	Nature of Product
	Minimum Requirements
	What’s New in IJL
	Technical Support and Feedback

	2. Programming Considerations
	Dynamic Link Library
	Import Library
	Header File
	Steps for Creating an IJL Application

	3. Architecture Description
	Supported I/O Data Structures
	Supported Data Formats
	JPEG Properties Data Storage
	Multi-Threading Support

	4. Interface Specifications
	5. Inside the Library
	Initialization
	Clean-up
	Reading Data
	Writing Data
	Opening a JPEG Image
	Creating a JPEG Image
	Interrupted Encoding and Decoding
	Rectangle-of-Interest Decoding
	Scaled Decoding
	Embedded Thumbnail Decoding
	Progressive Image Support
	Accessing JPEG Images From a Buffer
	Odd Data Formats

	6. Pre- and Post- Processing
	DIBs
	IJL Color Spaces
	Subsampling
	Upsampling
	Decoding and Post-Processing Matrix
	Encoding and Pre-Processing Matrix

	7. Advanced IJL Features
	Use of Processor-Specific Code
	Setting the DCT Algorithm
	Writing and Reading of JPEG Comment Block
	Custom JPEG Tables
	Custom Quantization Tables
	Custom Huffman Tables
	Extended Baseline Decoding

	Appendix A Glossary of Terms
	Appendix B Data Structure and Type Definitions
	JPEG_CORE_PROPERTIES
	Supporting Type Definitions
	Return Error Codes
	IJLibVersion Structure

	Appendix C Frequently Asked Questions

